The Various Methods to Biopsy the Lung

PROF SHITRIT DAVID

HEAD, PULMONARY DEPARTMENT

MEIR MEDICAL CENTER, ISRAEL

Conflict of Interest

This presentation is supported by AstraZeneca

Two main steps before treatment

Bronchoscopy

Easy to perform as an outpatient procedure

Moderate Sedation

Risk of complications is minimal

Bronchoscopy: modalities

- > BAL
- > Brushing
- > Cytology
- Biopsy

 Endobronchial (EBB)
 Transbronchial (TBB)
 Cryobiopsy

14

CLINICAL SYMPOSIA

Pleural effusion

- Pleural aspiration
- Pleural biopsy
 US/CT Guided
 Thoracoscopy
 (with or
 without pleurodesis)

Invasive Mediastinal Staging

- Mediastinoscopy
- Anterior Mediastinotomy

Minimally Invasive Mediastinal Staging

Endobronchial Ultrasound

EBUS

Endoscopic Ultrasound EUS

EBUS – Endobronchial Ultrasound Linear (Convex) and Radial

What is the EBUS?

EBUS

Bronchoscopy suite

Lymph nodes stations for EBUS

Superior mediastinal nodes

- 1 Highest mediastinal
- 2 Upper paratracheal
- 3 Prevascular and retrotracheal
- 4 Lower paratracheal (including azygos nodes)

N2 = single digit, ipsilateral N3 = single digit, contralateral or supraclavioular

Aortic nodes

- 5 Subaortic (A-P window)
- 6 Para-aortic (ascending aorta or phrenic)

Inferior mediastinal nodes

- 7 Subcarinal
- 8 Para-oesophageal (below carina)
- 9 Pulmonary ligament

N1 nodes

- 10 Hilar
- 11 Interlobar
- 12 Lobar
- 13 Segmental
- 14 Subsegmental

Indications for EBUS in lung cancer

- ❖ Diagnosis of lung cancer
- Staging of lung cancer
- ❖ Re-staging after neoadjuvant therapy
- ❖ Recurrence of lung cancer
- To obtain more specimen for molecular testing
- ❖To diagnose lung metastasis from other known primary cancer

What should be the first modality for LN Staging?

❖ The ACCP Guidelines for Lung Cancer recommended EBUS as first-line approached for invasive mediastinal staging of NSCLC.

Why EBUS and not Mediastinoscopy?

Surgery!

Complication rate 1-2.6%

Mortality 0.08%

Very difficult after the first procedure.

No option to reach hillar adenopathy (10,11,12 stations).

What is the benefit of EBUS?

Minimally invasive

Outpatient procedure

Same benefit in elderly (above 75 yrs old) patients.

ROSE-Rapid Onsite Evaluation

The EBUS is indicated in every case of unexplained mediastinal lymphadenopathy.

Diagnosis and staging of lung cancer

EBUS-TBNA Systematic Review and Meta-analysis

- 10 studies (n=817)
- Sensitivity = 0.88 (95%cl, 0.79-0.94), Specificity = 1.00 (95%cl, 0.92-1.00)

Table 1 Study characteristics

Paper	Eligible patients (n)	Patient population	Inclusion criteria		
Okamoto (2002)18	37	Suspected lung cancer			
Yasufuku (2005) ¹⁵	108	Known/suspected lung cancer	CT mediastinal lymph nodes >1 cm on short axis		
Rintoul (2005)16	20	Known/suspected lung cancer	CT mediastinal lymph nodes >1 cm on short axis		
Yasufuku (2006) ¹⁷	102	Known/suspected lung cancer	Stage I-IIIa		
Plat (2006)10	33	Suspected lung cancer	PET positive mediastinal lymph nodes		
Pierard (2006)19	51	Suspected lung cancer	PET positive mediastinal lymph nodes		
Herth (2006)13	100	Known NSCLC	CT mediastinal lymph nodes <1 cm on short axis		
Yasufuku (2007) ¹²	45	Known/suspected lung cancer	Operable disease		
Skwarski (2007)14	300	Known/suspected lung cancer	ND		
Annema (2007)11	21	Known NSCLC	ND		

ND, not described; NSCLC, non-small cell lung cancer; PET, positron emission tomography.

Adams et al. Thorax; 2009; 64: 757-62

EBUS vs. MED

TABLE 1. Diagnostic Yield of EBUS-TBNA and Mediastinoscopy in the Evaluation of Mediastinal Lymph Nodes

	Lymph Node Size in mm: Mean ± SD (Range)	EBUS Yield (%)	Mediastinoscopy Yield (%)	p^a
All lymph nodes	15 ± 2.6 (10–21)	109/120 (91)	94/120 (78)	0.007
Lymph node station				
2 all	$16 \pm 3.1 (10-21)$	24/25 (96)	22/25 (88)	0.30
2 right	$18 \pm 1.6 (14-20)$	12/13 (92)	11/13 (85)	0.99
2 left	$14 \pm 3.6 (10-21)$	12/12 (100)	11/12 (92)	0.99
4 all	$15 \pm 2.6 (10-19)$	45/54 (83)	40/54 (74)	0.24
4 right	$15 \pm 2.6 (10-19)$	29/34 (85)	24/34 (71)	0.14
4 left	$15 \pm 2.6 (10-19)$	16/20 (80)	16/20 (80)	0.99
7	$15 \pm 2.4 (10-19)$	40/41 (98)	32/41 (78)	0.007
Pathology				
Malignant	$16 \pm 2.7 (10-21)$	64/74 (86)	49/74 (66)	0.004
Benign	$15 \pm 2.5 (10-21)$	45/46 (98)	45/46 (98)	0.99

Ernst et al, J Thorac Oncol 2008; 3: 577

How to do the Staging examination?

Case 1: Adenocarcinoma (Lung)

Case 2: CT

Case 2: PET

Case 2: EBUS- Lymph node station 5

A few atypical cells (positive for 5/6 and p63 immunostains) present in a background of lymphocytes and reactive respiratory cells (CK 7 positive), consistent with metastasis of squamous cell carcinoma.

EBUS GUIDED FNA OF CENTRAL PARATRACHEAL LESIONS

Radial US

How many aspirations?

- "Pass" or "Aspiration": the needle is inserted in the LN, agitated several times, and removed
- Yield plateaus after 3 passes

Lee HS et al. CHEST 2008; 134:368-374

FNA technique: Hitting the node

- Allways send to cell block
- Estimation of 50-100 cells in every aspiration
- The 19 and the 21-gauge needle resulted in better preservation of histologic structure.
- The needle has to move inside the node.
- Sample the node from capsule to capsule.
- Sample different areas of the node.

Lee H, Chest 2008; 134: 368-374

The typical features of benign nodes

- Oval shape
- Size <1 cm</p>
- Indistinct margin
- Presence of a central hilar structure
- * Relatively high echogenicity
- Homogenous echogenicity.

Common features of malignant nodes

- Round shape
- ♦ Size >1 cm
- Distinct margin
- ❖ Absence of the central hilum
- Eccentric cortical thickening
- Relatively low echogenicity
- Heterogeneous echogenicity
- Presence of necrosis
- Increased vascularity in lymph nodes

Rapid On Site Evaluation

With or without ROSE?

Reference	Study design	Population	Intervention	Comparator	Primary objective (endpoint)	Outcome	Quality metric indicator
Trisolini [47] 2011	Prospective, experimental RCT	Enlarged mediastinal or hilar LN (n = 168)	TBNA + ROSE (n = 83)	TBNA (n = 85)	Diagnostic yield; secondary: biopsy sites	Yield: 78 vs. 75% (NS); adequate sample 78 vs. 87% (NS); number of TBB (IQR) 1 vs. 2 (p < 0.001); complication rate 6 vs. 20% (p < 0.05)	Good
Yarmus [48] 2011	Prospective, experimental RCT	Enlarged mediastinal or hilar LN (n = 68)	TBNA + ROSE (n = 34)	TBNA (n = 34)	Diagnostic yield; secondary: number of needle passes and procedure time	Yield: 55 vs. 53% (NS); adequate sample 94 vs. 88% (NS); number of needle passes 4 vs. 4 (NS); number of TBB (NS); procedure duration time and amount of sedatives needed (NS); complication rate not reported; study was powered to detect differences in yield >30%	Fair
Oki [49] 2013	Prospective, experimental RCT	Enlarged mediastinal or hilar LN + (suspected) lung cancer (n = 120)	EBUS + ROSE (n = 55)	EBUS (n = 53)	Number of additional procedures	Additional procedures 11 vs. 57% (p < 0.001); number of aspirations 2.2 vs. 3.1 (p < 0.001; in non-ROSE group predetermined to 3); procedure time 22.3 vs. 22.1 min (NS); sensitivity 88 vs. 86% (NS); accuracy 89 vs. 89% (NS)	Good

 No good quality data (RCT) on EBUS +/-ROSE, mostly for standard TBNA +/- ROSE

A.In experienced hands, mediastinal staging could be performed under moderate sedation without decreasing diagnostic yield

ORIGINAL ARTICLE

Randomized Trial of Endobronchial Ultrasound–guided Transbronchial Needle Aspiration under General Anesthesia versus Moderate Sedation

Roberto F. Casal^{1,2}, Donald R. Lazarus¹, Kristine Kuhl³, Graciela Nogueras-González⁴, Sarah Perusich², Linda K. Green^{1,5}, David E. Ost⁶, Mona Sarkiss⁷, Carlos A. Jimenez⁶, Georgie A. Eapen⁶, Rodolfo C. Morice⁶, Lorraine Cornwell^{1,8}, Sheila Austria⁹, Amir Sharafkanneh^{1,2}, Rolando E. Rumbaut^{1,2}, Horiana Grosu⁶, and Farrah Kheradmand^{1,2}

- RCT, EBUS under MS vs. GA (1:1 randomization)
- Adults referred for EBUS-TBNA of hilar/mediastinal LN or masses
- Cytologist blinded to randomization
- 1ry Outcome: Diagnostic yield
- 2^{ry} Outcomes: sensitivity, sample adequacy, procedure time, procedure completion rates, complication rates, escalation of care, tolerance

Am J Respir Crit Care Med Vol 191, Iss 7, pp 796-803, Apr 1, 2015

EBUS also for Molecular Testing?

- Retrospective analysis of 209 cytology specimens from patients with lung cancer MD Anderson
 - 99 EBUS samples
 - 67 TTNA samples
 - 27 body fluid
 - 10 US-guided FNA superficial sites
- DNA sequencing for EGFR and KRAS performed all specimens
- Overall specimen insufficiency rate was low: 6.2%
 - EBUS: 4%
 - TTNA: 5%
 - Body fluid: 1%
 - US-guided superficial FNA: 1%

Multiple Other Studies!!

Nakajima T, et al. J Thorac Oncol 2011; 6:203-206

Lee at al. 2013;24(6):351-355

Schmid-Bindert et al. PloS One.2013;8(10):e77948 Bughalo et al. Clinical lung cancer.2013;14(6) 704-712. Folch E. et al. J Thorac Oncol. 2013 Nov;8(11):1438-44

Billah S, et al. Cancer Cytopathol. 2011; 119(2):111-117

The Efficacy of EBUS-Guided Transbronchial Needle Aspiration for Molecular Testing in Lung Adenocarcinoma

(Ann Thorac Surg 2013;96:1196-202)

Table 3. Molecular Analysis of Tested Samples

Sample Type	No. of Samples Tested	Positive (%)	Negative (%)	Insufficient (%)	Sufficient for Testing
EGFR	51	5 (10%)	41 (80%)	5 (10%)	46 (90%)
ALK	43	5 (12%)	34 (79%)	4 (9%)	39 (91%)
Kras	40	10 (25%)	20 (50%)	10 (25%)	30 (75%)

Numbers in parentheses represent proportion in total number of samples tested.

ALK = anaplastic lymphoma; EGFR = epidermal growth factor receptor; Kras = Kirsten rat sarcoma.

Who many procedure for Training and Competency?

❖ The European Respiratory Society/American Thoracic Society statement on interventional pulmonology recommends completion of <u>40 supervised procedures</u> for achievement of initial competency in EBUS.

Cryobiopsy

קריוביופסיה מול ביופסיה רגילה

Figure 2 Histological sample of (a) forceps-transbronchial biopsies (TBB) (×4 magnification) showing mainly peribronchial alveolar tissue with interstitial infiltration but no signs of rejection versus (b) cryo-TBB (×4 magnification) composed of alveolar tissue with abundant alveoli and blood vessels with peri-vascular infiltration by lymphocytes indicating acute cellular rejection A1.

Meir MC experience: 2018

- ❖ 587 EBUS procedures.
- ❖37% from all bronchoscopies.
- *85% of all EBUS performed under moderate sedation.
- ❖40% of the EBUS for diagnosis and staging of lung cancer.
- ❖40% only for staging of lung cancer.
- ❖15% for obtaining more specimen for molecular testing.
- ❖5% for other indications including lung metastasis LN.

Thank you!

