

EvoYon: Computational Discovery of Cystic Fibrosis Mutation Specific Drugs

Confidential

Agenda

- Introduction: Evogene + Yonatan = EvoYon
- EvoYon approach
- Initial results
- Summary

Introduction to Evogene

Ι :

Technology platform

Analysis platforms

Proprietary algorithms and modules to prioritize the best product candidates

Computational integration of 'Big Data' - currently four interconnected databases

Interconnected Data Hub

Driving Ag Innovation via predictive biology

Science

Multidisciplinary scientific approach driving our R&D

Dedicated 'Big Data'

On-going accumulation - public resources and problem-tailored experiments

Application pathways

<u> Market Information – Drug Market Size</u>

Treatment is divided into:

Tier 1Symptomatic drugs for all CF patients

- Average annual cost per patient is ~\$50,000*
- Market size \$3.7 billion

* Heimeshoff et al, 2012

Tier 2

Mutation specific drug to restore gene function

- Emerging market:
 - only 2 available treatments, consisting of a market of ~ \$ 2.1B in 2017
 - Most mutations do not have a solution
- Average annual cost per patient is ~\$275,000

Tier 2 Market

Potential populations: **5,000** patients

Next Generation (phase II) Potential populations: **65,000** patients

Annual cost per patient: \$310,000

2017 revenue: \$800M

Market penetration: ~50%

Lunched: 2015

Annual cost per patient: \$265,000

2017 revenue : \$1.3B

Market penetration: ~20%

~5,000 CF patients with other mutations do not have a solution in the CFF pipeline

Non-conventional motivation: Yonatan, 12 years old with N1303K and a splicing mutation

Bronze Medal, Israeli National Judo Championship, up to 30 Kg, 3 years in a row

(Malnutrition has its benefits)

8

Agenda

- Introduction: Evogene + Yonatan = EvoYon
- EvoYon approach
- Initial results
- Summary

EvoYon's Approach

Discover and screen small molecules for treatment of specific mutations, utilizing Evogene's computational tools & experts:

- Proprietary algorithms and pipelines- PoinTar™ and PointHit™
- Big data infrastructure
- "Chemunity": virtual database of 156 million compounds

Test molecules in high throughput *in vitro* **screen** (using Ussing chambers) to be advanced to clinical trials

Target Protein Structure

Strategy for restoring mutant protein functionality

Chemical Database

156 M small molecule virtual database: **Chemunity™**

High throughput virtual screening pipeline

To provide a library of prioritized molecules

Target Protein Structure

Strategy for restoring mutant protein functionality:

Chemical Database

156 M small molecule virtual database (Chemunity™):

PointHit™

- PointHit performance is 156M, greater by 100x than existing pharmaceutical standard
- Very short processing time: 5 days
- Increased molecule diversity lead to greater potential of finding best candidate for a drug

Agenda

- Introduction: Evogene + Yonatan = EvoYon
- EvoYon approach
- Initial results
- Summary

EvoYon CFTR WT model

- Based on human PDB code: 5uak (Liu F. et al., Cell 2017)
- Missing loops were modeled using public CFTR models (Mornon and Dalton)
- The R domain (segment 671-843) was not modeled
- Overall: ~180,000 atoms in the system composed of: CFTR, membrane, *explicit water* and counterions

EvoYon CFTR WT model – 100ns Molecular Dynamics (MD) simulation

The N1303K mutation

- N1303K is a class II mutation
- Asparagine (short, polar amino-acid) is changed to Lysine (long, positively charged)
- Lysine1303 is repulsed by adjacent Lysine at 1302
- The overall folding of N1303K is similar to the folding of the WT except for the NBD2 domain (Partial support: Meacham et al., 1999 and further support from our molecular dynamics stability analysis)

EvoYon CFTR N1303K model – 100ns MD Simulation

WT and mutant structures and simulations allow us to design repair strategies

N1303K Repair Strategy

Primary assumptions

- N1303K is a class II mutation undergoing degradation in the ER, not reaching the epical cell membrane
- N1303K is actively degraded by one of the cellular degradation systems (Inhibition of proteasomes or aggresomes rescues N1303K, Rapino et al, 2015)
- If N1303K avoids degradation and reaches the cell membrane, it is functional (treatment with cysteamine & EGCG, Tosco et al, 2016)

Repair strategy

- Identification of WT vs. N1303K structural differences may point out the recognition site of the degradation system(s).
- Blocking these mutation specific recognition site(s) using small molecules may prevent N1303K degradation

EvoYon's Discovery Initial Results

Normal protein

Mutant protein

N1303K Strategy 1: Animation of the new groove

N1303K Mutation vs. WT – STRATEGY 2

N1303K WT

Agenda

- Introduction: Evogene + Yonatan = EvoYon
- EvoYon approach & Initial results
- Summary

Summary

- Evogene is a leader in Ag. Chem., operating innovative high throughput pipelines enable efficient target based small molecule discovery
- Significant value of the N1303K mutation:
 - ~900 patients make a potential drug (on 2025: ~1,500 patients) commercially viable
 - No competition: this mutation does not have correctors in current pipelines

- We believe that Evogene's technologies, methodologies, experts and the available new CFTR structures have a good chance to discover innovative mutation specific drugs
 - Evogene has generated CFTR models for WT and N1303K mutant based on new human structure
 - Innovative strategy for amending class II mutation by obstructing degradation system(s)
 - Development of multiple repair strategies supported by computational resources

EvoYon team

- Idit Buch, PhD
- **Ben** Gradus, PhD
- Gali Golan, PhD
- Roberto Olender, PhD
- Alex Tasker
- **Eran** Kosover
- Hanoch Senderowitz, PhD, Consultant

EvoYon: Computational Discovery of Cystic Fibrosis Mutation Specific Drugs

26

