Diffusion Capacity in Cystic Fibrosis

Daphna Vilozni,
Moran Lavie, Ifat Sarouk, Bat-El Bar-Aluma, Adi Dagan,
Moshe Ashkenazi, Ori Efrati

The Pediatric Pulmonary Unit, The National Center for Cystic Fibrosis,
The Edmond and Lily Safra Children's Hospital, Sheba Medical Center,
Affiliated with the Sackler Faculty of Medicine,
Tel-Aviv University, Israel

The study was supported by the J Baum Foundation Israel Lung Association, Israel

The Diffusion capacity or Transfer Factor measurements

Validates lung efficiency:
 How well Oxygen and CO2 moves into/out of the lungs

Originally developed for restrictive lung disease

DLCO may be related to available alveolar volume

Alveolar volume – "The alveolar/Capillary membrane bed"

As measured by TLC - Anatomical dead space

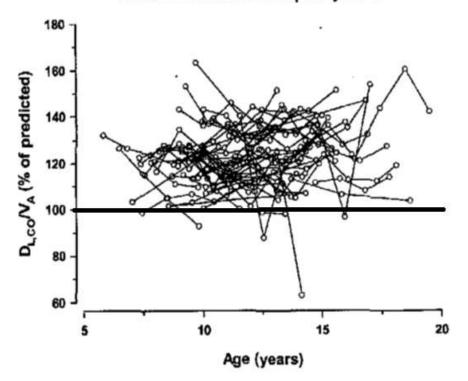
In DLCO test = VA is the alveolar volume during the breathhold maneuver

This "correction" may be misleading in the presence of

- Incomplete alveolar expansion,
- Diffuse versus localized loss of alveolar units,
- Poor alveolar mixing

Should we perform DLCO in CF

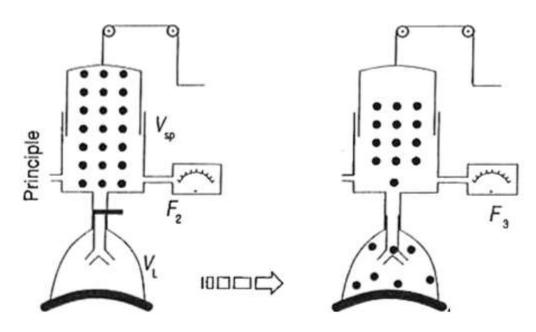
Cystic fibrosis (CF) disease is characterized by:


- 1. Airway obstruction,
- 2. Increased trapped air,
- 3. Bronchiectasis
- 4. Parenchyma fibrosis,

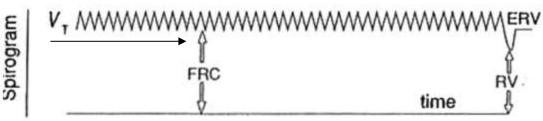
All may affect the volume available for diffusion and the lung's capillary blood

Therefore: One would expect DLCO rate to decrease with progress of disease.

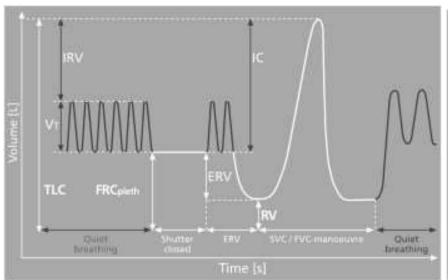
Currently, DLCO appears to play no role in CF assessment compared to spirometry

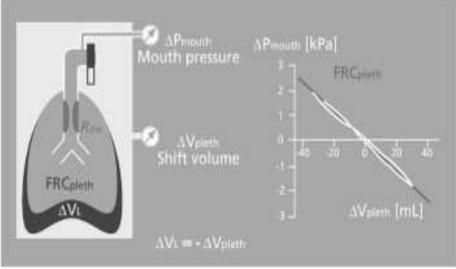

Preserved Diffusion Capacity in CF

At all ages DLCO is normal or increased


Does alveolar volume measured by DLCO represents the alveolar/Capillary membrane bed in CF

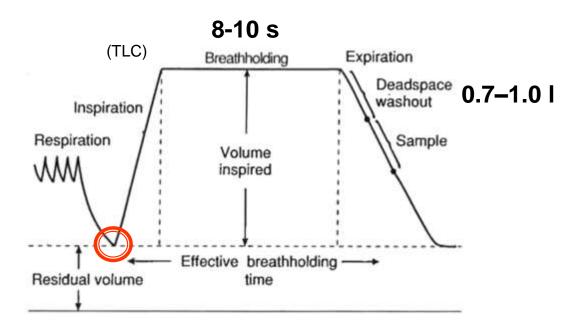
Helium dilution




Connecting at FRC point

Dilution – FRC Tidal volume mixing

Body plethysmograph


Connecting point - FRC

FRC = The mechanical equilibrium of the opposite forces exerted by the lung tissue and thorax

DLCO Test Procedure

Inhalation of gas mixture

- 0.27%CO diffusion 10sec breath-holding time
- 14%He lung volume measurement
- Connecting point Residual Volume

(Cotes JE. Lung function: assessment and application in medicine, 5th Ed. Oxford, Blackwell Scientific Publications; 1993).

	He-dil.	ВВ	DLCO			
Connecting point	FRC	FRC	RV			
VA (restrictive LD): TLC-ADS						
Mixing time	3-5min	seconds	10sec			
VA (obstructive LD): TLC-ADS + Trapped air						
Mixing time	5-15min	seconds	10sec			

Low VADLCO due to incomplete gas mixing during the breath-hold period would artificially inflate DLCO/VA compared to DLCO/Pleth

To compare the DLCO/VA between

- VA measured by Inert gas during the DLCO test (DLCO/VASB)
- VA calculated from lung volume measurements plethysmography; DLCO/VApleth)

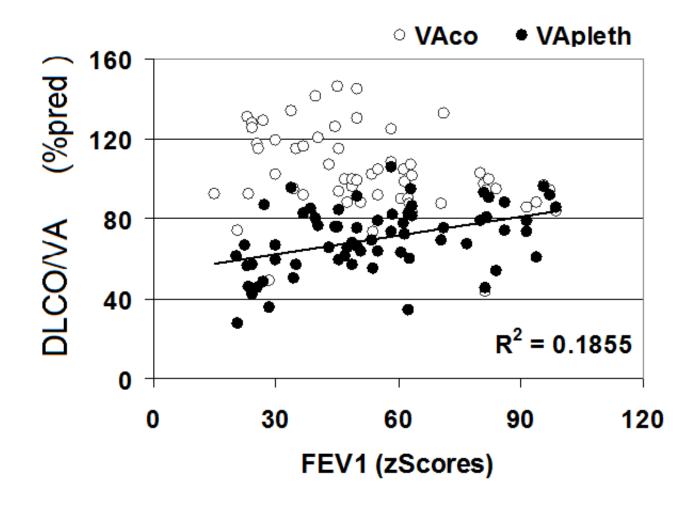
Study design: Retrospective cross sectional.

74 CF patients (m=43) mean age 28 ±10 years, mean BMI 20±3 kg/ht².

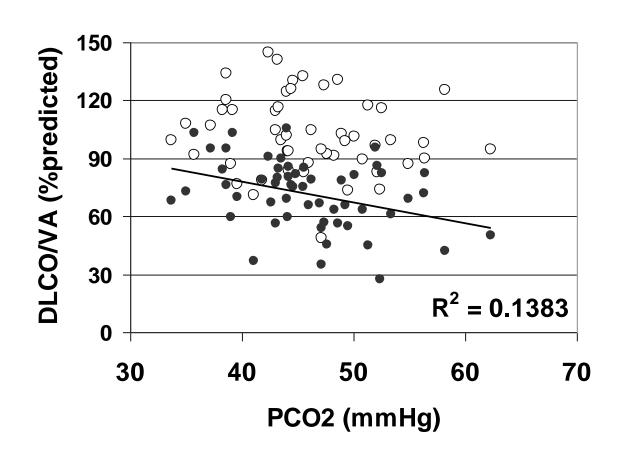
Exclusion criteria: Exacerbations, Hospitalizations, Hemoptysis

Obtained DLCO data:

- 1. Lung function data (spirometry, BB, DLCO)
- 2. Blood-gas levels preferably performed on the same day


DLCO Volume correction was calculated using

- 1. VADLCO based on the single-breath technique (measured 95%TLC)
- 2. VApleth using TLC assessed plethysmography (=TLC-Ads)


Spirometry	%predicted	zScore (GLI)
FVC	65 ±20	-2.92 ±1.20
FEV1	53 ±23	-3.74 ±1.72

	Inert gas DLCO	<u>Plethysmography</u>	<u>P value</u>
RV	91 ±47	207 ±68	
VA	73 ±21	99 ±18	
RV/VA	113 ±45	201 ±58	0.0001
FRC	75 ±29	137 ±31	
DLCO	71 ±18		
DLCO/VA	102 ±18	68 ±17	

Alveolar Volume and FEV1

DLCO/VA and blood PCO2 level

Conclusions

- DLCO/VApleth follow spirometry indices deterioration and elevation of PCO2 level.
- 2. Deterioration in DLCO/VApleth begins when FEV1 was mildly reduced at value.
- DLCO/VASB poorly corresponded to elevation in PCO2 level and remains mostly within the normal range because lung volumes measured by inert gas.
- 4. The findings may justify the use of VApleth measured at same occasion as DLCOsB and suggests that this motion may be clinically meaningful