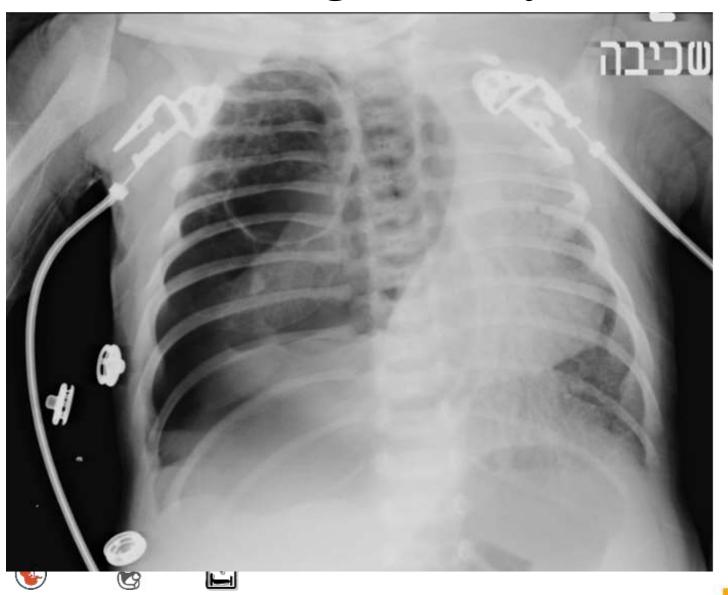
Neonatal cystic lung disease; How far should we proceed?

Kamal Masarweh

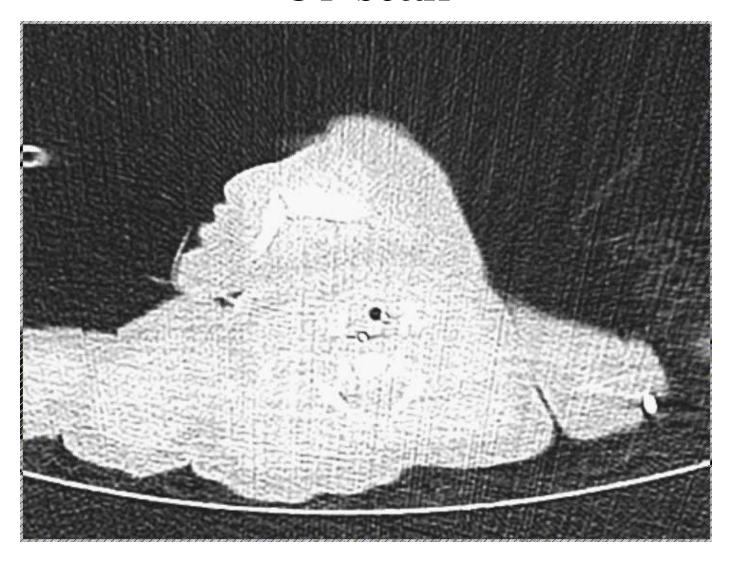
September 2017

Case presentation

- Non consanguineous Christians parents
- Pregnancy
 - Abnormal Nuchal Translucency test → Amniocentesis → Chromosome 8 anomaly (father & N.) (Del. KB127 at 8P21.3)
 - Normal prenatal US
- Female, term 37 weeks, weight 3.690 Kg
- Clavicular Fracture- Bilateral



At the age of 6 days


- Tachypnea, cyanosis, no fever
- ER Dyspnea, O₂ Sat 88%
- Diminished breathing sound Right thorax

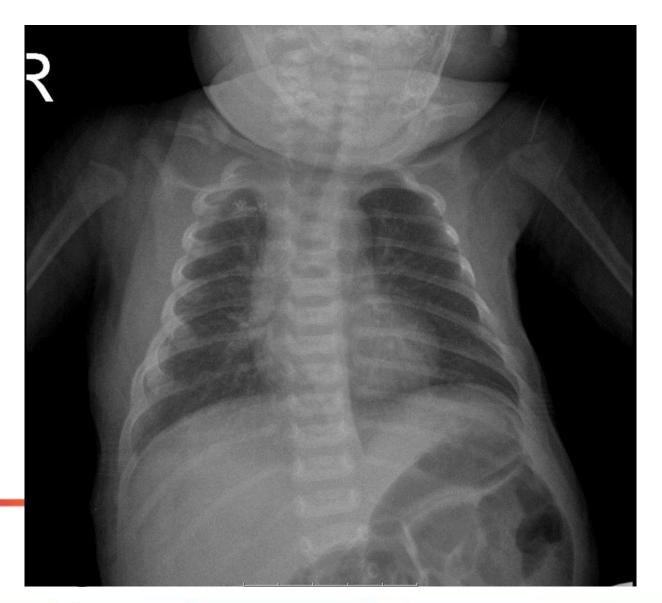
At the age of 6 days



CT scan

Transferred to our PICU

- Recurrent pneumothoraces (3)
- Recurrent drainage
- Mechanical ventilation

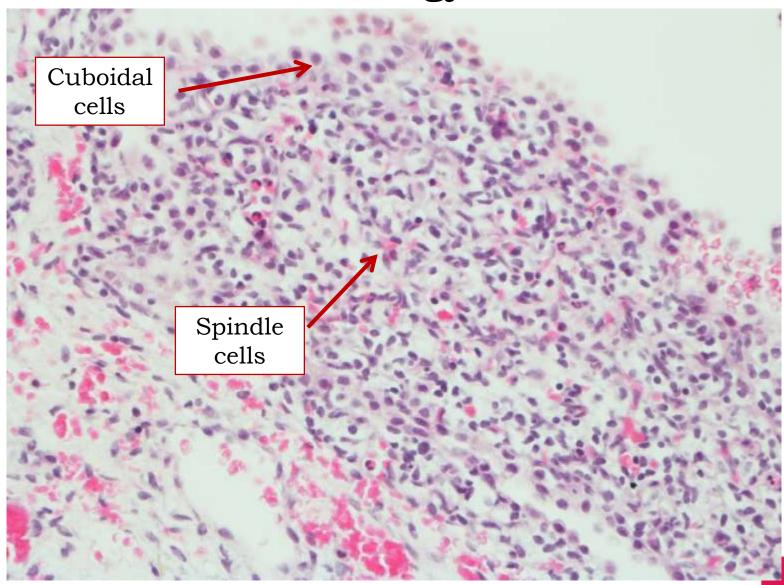


Decision – lobectomy

- Large Bulla from the anterior segment of RUL
- Anterior Segmental resection of RUL
- Discharged at age of 23 days

Decision – lobectomy

Follow up


- Monthly follow up
 - Excellent well being
 - Good weight gain
 - No respiratory symptoms
- Pathology:
 - Neonatal CPAM Type IV (Rambam & Hadassah)
- How should we proceed?
 - Lobectomy?
 - Follow up?

Concerns

- No prenatal diagnosis
- Early pneumothorax
- CPAM Type IV
- Consultation:
- The International Pleuropulmonary Blastoma registry (Dr. Kris Ann P. Schultz)
 - → Pleuropulmonary Blastoma Type 1

Pathology

CPAM - Congenital Pulmonary Airway Malformation

- Developmental malformation
- Most common congenital lung lesion
- Incidence –1 per 8300 to 35,000 live births
- Increase in the prenatal diagnosis of CPAM d/t widespread use of antenatal US

- Classified according to the location of the developmental site of malformation
- Type 0 Acinar Dysplasia
- Type 1 most common Bronchial/Bronchiolar
- Type 2 Bronchiolar
- Type 3 Alveolar
- Type 4 Peripheral
 - Very rare
 - Peripheral, thin walled cysts, multiloculated

CPAM Type 4

- Etiology obscure
- Likely a spectrum of disease between CPAM 4 and Type 1 Pleuropulmonary Blastoma
- Difficult to differentiate pathologically between CPAM type 4 and Type 1 Pleuropulmonary Blastoma

Pleuropulmonary Blastoma

- Rare malignant tumor of intrathoracic mesenchyme of childhood (pulmonary, pleural, combined)
- Most common primary malignancy of lung in pediatric population
- Mostly in children < 6 years of age
- Probably pulmonary analog of common developmental neoplasms of childhood
 - Wilms tumor, Hepatoblastoma, Neuroblastoma

PPB

- Type I cystic lesion
- Type II cystic/solid mass
- Type III solid high-grade sarcoma

Туре	I	lr	Total Cystic	II	II/II	III	Total II & III
n (%)	89 (25%)	26 (7%)	115 (33%)	124 (35%)	21 (6%)	90 (26%)	235 (67%)
Median Age (months)	8	47	12	35	36	41	37
5-year OS	89%	100%	91%	71%	53	3%	62%

- 350 cases (Messinger et al. Cancer, 2014)
- Currently 490 cases in the IPPB Registry

	4	Number of cases		Age at diagnosis			
Malignancy	Associated cyst type	in patients <20 years of age	Gross morphology	Median	Range	Common presentations ¹	
Type I PPB		~450	Cystic	9 mo	0-114 mo	Dyspnea, pneumothorax in 40%, or incidental discovery	
Type II PPB	Type I PPB (CPAM type 4)		Cystic and solid	36 mo	6-236 mo ³	Dyspnea, pneumothorax in 28%, "pneumonia," or incidental discovery	
Type III PPB			Solid	43 mo	18-147 mo	Dyspnea, "pneumonia"	

 Possibly stages of one malignant process on a biological continuum from cystic Type I PPB (early stage in tumorigenesis) to cystic/ solid Type II PPB, and then to solid Type III PPB

[•] Priest JR, Williams GM, Hill DA, et al. Pulmonary cysts in early childhood and the risk of malignancy. Pediatr Pulmonol 2009; 44:14.

Genetics of PPB

- 40% of children with PPB or their relatives may have other cysts or tumor growths:
 - benign cystic kidney tumors
 - Intestinal polyps
 - benign eye and nasal tumors
 - rhabdomyosarcoma
 - benign thyroid nodules or thyroid cancer
 - leukemia
 - gonadal tumors
 - ovarian Sertoli-Leydig cell tumors and dysgerminoma
 - testicular seminoma
- Priest JR, Williams GM, Hill DA, et al. Pulmonary cysts in early childhood and the risk of malignancy. Pediatr Pulmonol 2009; 44:14.

Role of *DICER1*

- Important gene in the biogenesis of microRNA
- Germline mutations in *DICER1* associated with increased risk for a wide variety of neoplastic conditions
- Seen in nearly 70% of all children with PPB
- Diagnosing PPB should prompt germline *DICER1* mutations, a finding which has importance for individual and family screening

CPAM vs PPB

- Factors predictive of PPB:
 - Symptoms (pneumothorax)
 - Bilateral or multisegment involvement
 - Type 4 CPAM
 - DICER1 germline mutation

Feinberg A, Hall NJ, Williams GM, et al. Can congenital pulmonary airway malformation be distinguished from Type I pleuropulmonary blastoma based on clinical and radiological features? J Pediatr Surg 2016; 51:33.

Priest JR, Williams GM, Hill DA, et al. Pulmonary cysts in early childhood and the risk of malignancy. Pediatr Pulmonol 2009: 44:14.

CPAM vs PPB

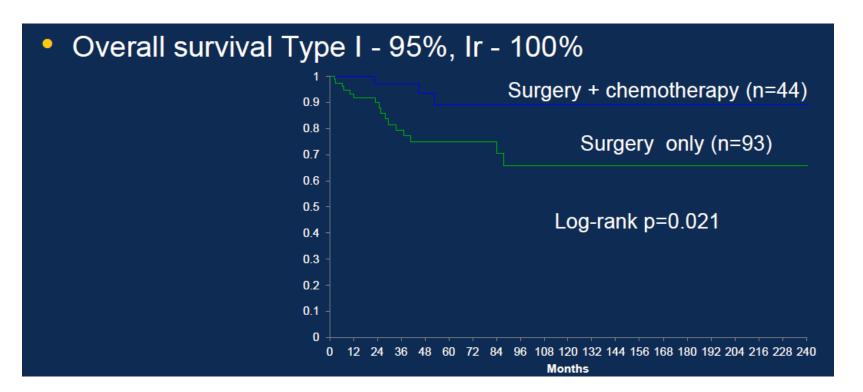
- Factors favoring a diagnosis of CPAM:
 - Prenatal detection
 - Presence of a systemic feeding vessel
 - Asymptomatic
 - Hyperinflated lung

Feinberg A, Hall NJ, Williams GM, et al. Can congenital pulmonary airway malformation be distinguished from Type I pleuropulmonary blastoma based on clinical and radiological features? J Pediatr Surg 2016; 51:33.

Back to our patient

- Respiratory distress, Pneumothorax 6 days old
- Surgery Segmentectomy
- CPAM type IV → Pleuropulmonary Blastoma Type I

- Possible options:
 - 1. Observation only
 - 2. Surgery Lobectomy
 - 3. Chemotherapy

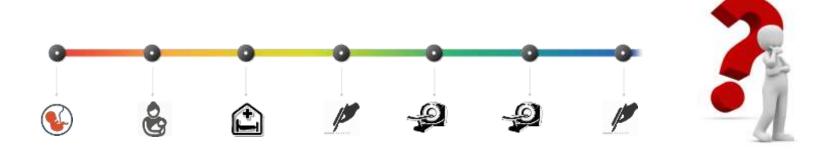

1. Observation:

- very good chance, but not guarantee that tumor would not progress
- consequences may be significant
- very careful follow- up q3 month CTs through highest time of risk

- 2. Surgery- Lobectomy
 - No clear margins
 - malignant cells spilled?
 - false sense of security?

3. Chemotherapy

- Progression not inevitable
- Good well being
- Toxicity


Williams et al. ASCO 2016

- Thorax CT scans:
 - 6 months No residual disease
 - 9 months New bullous lesion (6 mm) in RUL
 - → Proceed with RUL Lobectomy

- Pathology results from IPPB Registry
- Non resected previous cyst? recurrence?
- DICER 1 mutation gene counseling
- Should we consider chemotherapy?

Take Home Message

- CPAM Type IV and PPB Type I are rare
- Difficult to differentiate clinically/pathologically
- High index of suspicion
- How far should we proceed?

Thank you for listening!!