# Burkholderia Cepecia in CF

**CF conference 19.10.2017** 

#### **Outline**

- Patients presentation
- Burkholderia species epidemiology
- Clinical presentation
- Epidemic strains & Bcc outbreaks
- Treatment
- Discussion

## Case presentation A.A

- 17 years old boy
- Diagnosis with meconium ileus after birth
- Heterozygote: ΔF508/W1282X
- Pancreatic insufficient
- Impaired Glucose Tolerance (IGT) from 2015
- Mal nutrition BMI 15-17
- Compliance is good with routine CF medications, but refusal to IV therapy or gastrostomy installation
- Psychosocially: clever boy, very desperate in the last few years.

## Case presentation 1: A.A

#### **Sputum Cultures:**

- Staph aureus ,Pseudomonas mucoid type
- Burkholderia cepacia since 01/2012
- PCR 16S typing: <u>Burkholderia stabilis</u>

<u>In the past:</u> sensitive to Meropenem, Ceftazidime, Levofloxacin, Minocycline

**Now**: fully resistant

# Sputum culture A.A

| חיידק                | אנטיביוטיקה          | רגישות | תשובה |
|----------------------|----------------------|--------|-------|
| Burkholderia cepacia |                      | []     | -     |
| Burkholderia cepacia | Levofloxacin         | [R]    | 32    |
| Burkholderia cepacia | Minocycline          | [R]    | 48    |
| Burkholderia cepacia | Sulfamethoxa/Trimeth | [R]    | 32    |
| Burkholderia cepacia | Meropenem            | [R]    | 32    |
| Burkholderia cepacia | Ceftazidime          | [R]    | 256   |
| Burkholderia cepacia | Chloramphenicol      | [R]    | 256   |

## Case presentation 1: A.A

#### **Regular care:**

Routine CF medications **plus**:

Azetronam/Gentamycin inhalation

Meropenem inhalations 500 mg (twice daily)

P.O Resprim twice daily

P.O Levofloxacin/Minocycline (recurrent courses with mild exacerbations)

## **Lung function test 2011-2017**



## **Lung function test 2017**



## CT January 2016









## Case presentation 2: M.M.

- 38 year old women
- Presented after birth
- Homozygous W1282X mutation
- The older of 3 siblings with CF
- CFRD since age of 13 years
- Good compliance
- Stable over the years

#### **Sputum cultures**:

- Staph aureus , Pseudomonas, Candida
- Burkholderia stabilis since Feb. 2015

## Case presentation 2: M.M.

#### Regular care:

Routine CF medications plus

Coliracin inhalation

PTC study until few months ago

# Sputum culture

| חיידק              | אנטיביוטיקה          | רגישות | תשובה    |
|--------------------|----------------------|--------|----------|
| Candida tropicalis |                      | []     |          |
| Candida tropicalis | Amphotericine B      | [S]    | <=0.25   |
| Candida tropicalis | Fluconazole          | [S]    | <=1      |
| Candida tropicalis | Voriconazo1          | [S]    | <=0.12   |
| Candida tropicalis | Caspofungin          | [S]    | <=0.25   |
| Burkholderia sp.   | 'Quantity'           | []     | stabilis |
| Burkholderia sp.   | Levofloxacin         | [R]    | 32       |
| Burkholderia sp.   | Minocycline          | [S]    | 2        |
| Burkholderia sp.   | Sulfamethoxa/Trimeth | [R]    | 32       |
| Burkholderia sp.   | Meropenem            | [R]    | 32       |
| Burkholderia sp.   | Ceftazidime          | [S]    | 4        |
| Burkholderia sp.   | Chloramphenicol      | [R]    | 32       |

## **Lung function test 2014-2017**



## Case presentation 3: M.S.

- 34 years old woman
- Presented after birth
- Homozygous W1282X mutation
- One of three siblings diagnosed with CF
- CFRD from age of 16 years, insulin pump, unbalanced, (HBA<sub>1</sub>C -10)
- Chronic renal failure with gross proteinuria (Creatinin-2.2/BUN-28)
- 2006 liver transplantation due to cirrhosis with varices bleeding and liver failure
- Recurrent parotitis

## Case presentation 3: M.S.

- Sputum cultures:
- Staph aureus
- Pseudomonas
- Burkholderia stabilis since 2011

- Stable for many years
- In the past two years numerous exacerbations treated with IV medication

## Sputum culture

| חיידק                | אנטיביוטיקה          | רגישות | תשובה |
|----------------------|----------------------|--------|-------|
| Burkholderia cepacia |                      | []     | -     |
| Burkholderia cepacia | Levofloxacin         | [R]    | 32    |
| Burkholderia cepacia | Minocin              | [R]    | 16    |
| Burkholderia cepacia | Sulfamethoxa/Trimeth | [R]    | 32    |
| Burkholderia cepacia | Ceftazidime          | [R]    | 256   |
| Burkholderia cepacia | Meropenem            | [R]    | 32    |
| Burkholderia cepacia | Chloramphenicol      | [R]    | 32    |

## Case presentation 3: M.S.

#### Routine CF medications

#### plus

- Prograph (2 mg\*2/d)
- Prednisone (5 mg\*1/d)
- Tobramycin and Meropenem inhalations
- Minocycline, Levofloxacin recurrent with exacerbation

## **Lung Function Test**



## Sub typing of *B.stabilis*

#### MALDI TOF analysis results:

- 2 sub-types of *B.stabilis*:
- One identical type for the two sisters
- Different sub-type for patient 1

## **Burkholderia** Species

- Gram-negative, aerobic, rod-shaped bacteria
- More than 60 species in the natural environment
- **B.c**epacia **c**omplex (Bcc): 18 closely related species (genomovars)
- Not pathogenic for healthy humans
- First reports of Bcc infection in CF patient in the late 1970s-early 1980s
- Chronic severe respiratory tract infections in CF patients (3-4% USA/GB)

## **Epidemic strains**

#### **Acquisition and transmission**

- Epidemic strains: well adapted to human infection, widely distributed in the natural environment (B. gladioli & B.cepacia - plant pathogens)
- Inter patient transmission: strains common to CF patients in wider geographic regions.
- New *Burkholderia* infection in CF patients: acquisition of strains from the natural environment.

## Species distribution in CF



#### **Burkholderia** outbreaks

- Outbreaks due to contaminated medical devices and products (mouthwashes, ultrasound gels, skin antiseptics, and medications hospitalized, non-CF patients)
- Interpatient spread: Genotyping studies identified strains common to multiple patients receiving care in the same CF centers.

## **Bcc in CF: clinical manifestations**

- Accelerated loss of lung function, lower BMI, more hospital admissions and increased mortality
- Wide spectrum: asymptomatic chronic infection → life threatening necrotizing pneumonia
- Individual patient outcomes are unpredictable and influenced by host-pathogen interactions as well as microbial virulence factors

## Cepacia syndrome

- Necrotizing pneumonia, pyrexia, almost universally fatal outcome
- Blood cultures are positive for BCC (pre terminal phase)
- *B. cenocepacia* (genomovar III), especially the ET12 epidemic strain. also reports with *B. cep*acia (I) and *B.multivorans* (II)
- Bcc sepsis: mortality in CF patients after lung transplantation (especially pre-transplant B. cenocepacia - contraindication)
- Successful treatment : case reports, combination of IV antibiotics +/- immunomodulation

# **Burkholderia cepacia** Complex Regulation of Virulence Gene Expression

#### Mechanisms used by Bcc bacteria to adapt the CF lung:

- Antibiotic resistance
- Adherence to the respiratory epithelia
- Adaptation to low oxygen
- Iron acquisition
- Transport and efflux systems
- Biofilm formation
- Quorum sensing

## Long term colonization of Bcc



#### **Treatment**

No consensus exists regarding early eradication treatment and chronic maintenance therapy for Bcc in CF

Eradication therapy for Bcc in CF patients. Cochrane 2016

 Main results: No studies looking at the eradication of Bcc were identified



# Antibiotic treatment for *B.cepacia* complex in CF patients experiencing a pulmonary exacerbation

Main results: No trials were included in this review.

#### **Authors' conclusions:**



- Lack of evidence to guide decision making
- No conclusions about the optimal antibiotic regimens for people with CF who have chronic Bcc infections
- Clinicians must continue to assess each person individually, taking into account in vitro antibiotic susceptibility data, previous clinical responses and their own experience

## New therapies & approaches

A Current approaches B

Antibiotics in clinical use

Aztreonam, monobactam (Bosso et al., 1991; Tullis et al., 2012)

Doripenem, carbapenem (Zobell et al., 2014)

**Tobramycin**, aminoglycoside (Waters *et al.*, 2017)

New compounds in clinical trials OligoG (inhaled alginate oligosaccharide), perturbation of biofilm formation (www.clinicaltrialsregister.eu/ctrsearch/trial/2014-002125-35/DE) Alternative approaches

Molecules in clinical use for other diseases Immunosuppressors and corticosteroids, contribution to antibiotic response (Gilchrist et al., 2012; Weidmann et al., 2008)

IFN-y, increasing of autophagosome formation (Assani et al., 2014)

Thiosulfoacid S-esters, antimicrobial activity (Lubenets et al., 2017)

**Cysteamine**, mucolytic and antimicrobial properties; restoration of CFTR function (Vu et al., 2017)

**Imidazoles,** increasing of *in vitro* biofilm eradication (Van den Driessche *et al.* 2017)

Natural products

Plant nanoparticles, antimicrobial activity (Amato et al. 2016)

Fish oils, antimicrobial activity (Mil-Homens et al., 2016; Olveira et al., 2010)

**Glycopolymers**, antimicrobial properties and enhanced susceptibility of resistant strains (Narayanaswamy et al. 2017)

Other alternatives

Phage therapy and Phage-Antibiotic

Synergy, antimicrobial activity (Semler et al., 2014; Kamal and Dennis, 2015)

Antimicrobial peptides, prevention of biofilm formation (de La Fuente-Nunez et al., 2014)

**Quorum sensing inhibitors,** decreasing of bacterial virulence (Brackman *et al.* 2012; Scoffone *et al.*, 2016)

#### **Antibiotics in Clinical Use**

#### **Aztreonam:**

- Monobactam against gram negative
- Inhibiting bacterial cell wall synthesis
- AZLI showed in vitro activity against Bcc.
- Double-blind, placebo-controlled, 24-weeks trial in 100, CF patients with chronic Bcc infection
- No significant differences were observed for any endpoints, including: FEV<sub>1</sub>%, number of respiratory exacerbations, or hospitalizations

#### **Antibiotics in Clinical Use**

#### **Tobramycin**

- Aminoglycoside, prevents the formation of the 70S ribosomal complex
- In vitro: high-dose tobramycin reduced Burkholderia biofilm thickness
- Pilot, open-label trial of TOBI Podhaler for 28 days 10 adults and children with CF & chronic Bcc Results: decreased pulmonary bacterial burden (CFU/ml) and inflammation (IL8 $\downarrow$ ). However, lung function was not significantly improved ( $\uparrow$ FEV<sub>1</sub>=4.6%)

#### Molecules in clinical use for other diseases

#### **Immunosuppressors and Corticosteroids**

- The role in the management of Burkholderia infections is not completely understood.
- Worth considering for patients with poor prognosis (Cepecia syndrome)

#### IFN-g

- CF macrophages show a suboptimal IFN-g response during B.
  cenocepacia infection causing deficient autophagosome formation.
- Only in cell culture models and the efficacy in vivo has yet to be determined.

Gilchrist, et al. Successful treatment of cepacia syndrome with a combination of intravenous cyclosporin, antibiotics and oral corticosteroids. J. Cyst. Fibros. 2012

Assani, K, et al. IFN-g stimulates autophagy-mediated clearance of Burkholderia cenocepacia in human cystic fibrosis macrophages. PLoS ONE 2014

#### Molecules in clinical use for other diseases

#### Cysteamine

- Disrupt disulfide bonds
- Inhibition of bacterial biofilm & restore CFTR function in combination with potentiators and activators.
- Effect in combination with antimicrobial agents in vitro (Tobramycin, Ciprofloxacin, Trimethoprim-Sulfamethoxazole)

#### Phage Therapy and Phage-Antibiotic Synergy

- Bacterial viruses (bacteriophages) developed in the 1930s
- B. cenocepacia infections in a murine model: aerosolized phage treatments → decrease in bacterial loads within the lungs.
- Phage-antibiotic synergy (PAS): antibiotics + phages → form larger plaque (Ciprofloxacin, Meropenem, Tetracycline) (increased access to phage receptors)
- PAS effect was not altered when treating antibiotic resistant cells

## Summary

- 3 patients variable presentation
- B. Stabilis acquisition from the natural environment, north of Israel?
- Epidemic Bcc adapt to the CF lung
- No guidelines regarding early eradication and chronic therapy for Bcc in CF
- Pipe line: to think out of the box

# Thank you