

Aspergillus – bystander or intruder?

Malena Cohen-Cymberknoh, MD

Pediatric Pulmonology and CF Center
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

CF Israeli Annual Meeting, Caesarea, October 19-21, 2017

Background

- Over the last decade, a significant increase in the prevalence of fungi in CF respiratory cultures was reported
- A. fumigatus (Af) is the most common filamentous fungus involved in CF lung disease, with reported prevalence rates ranging from 6% to nearly 60%

Why do CF patients acquire fungi?

- Patients with CF are at increased risks of fungal acquisition, colonization and infection for similar reasons they acquire bacteria
- Abnormal mucociliary function and local immunogenic impairment promote fungal colonization whereas prolonged antibiotic and corticosteroid use may facilitate fungal growth

Triggers of inflammation in CF airway cells

Intracellular triggers

Extracellular triggers

Original article

Prevalence and risk factors for recovery of filamentous fungi in individuals with cystic fibrosis

Christopher R. Sudfeld ^{a,*}, Elliott C. Dasenbrook ^b, William G. Merz ^{a,c}, Karen C. Carroll ^c, Michael P. Boyle ^b

- A CF cohort database from JHH (1997-2007)
- n=614 children and adults with CF
- Prevalence of filamentous fungal isolation increased from 2% in 1997 to 28.7% in 2007

Risk factors include older age, decreased lung function, and chronic oral antibiotics, while inhaled corticosteroids surprisingly decreased the likelihood

The dilemma: Aspergillus fumigatus: bystander or intruder?

Innocuous.... the "result" of poor lung function and clearance?

or

It is the "cause" of poor outcomes?

Association of Chronic Candida albicans Respiratory Infection With a More Severe Lung Disease in Patients With Cystic Fibrosis

Alex Gileles-Hillel, MD, David Shoseyov, MD, 1,2,3 Itzhack Polacheck, PhD, Maya Korem, MD, Eitan Kerem, MD, 1,2,3 and Malena Cohen-Cymberknoh, MD, 1,2,3*

4,244 sputum cultures (2003-2009) from 91 patients with CF (mean age 19.7 yrs.)

Chronic respiratory colonization of *C. albicans* is associated with worsening of FEV₁ and a higher annual rate of FEV₁ decline

Risk factors for chronic *C. Albicans* colonization

A multivariate logistic regression model

	OR (95% CI)	P value
Aspergillus spp.	9.8 (2.5 – 38.2)	0.001
CFRD	3.5 (1.1 – 10.8)	0.02
PI	3.9 (1.3 – 11.6)	0.01
FEV ₁ < 60%	3.1 (0.9 – 9.8)	0.02
Chronic P. aeruginosa	1.7 (0.8 – 4.6)	0.18

The Effect of Chronic Infection With Aspergillus fumigatus on Lung Function and Hospitalization in Cystic Fibrosis Patients

Reshma Amin, Annie Dupuis, Shawn D. Aaron and Felix Ratjen

- N= 230 CF patients, Hospital for Sick Children, Toronto, 1999-2006
- Primary outcome: annual number of hospitalizations for pulmonary exacerbations
- Persistent Af infection and CFRD were associated with an increased risk of pulmonary exacerbations
- No increased risk among patients with ABPA
- Significant interaction between Af and Pa on lung function (p=0.0006)

Decline in FEV₁% over time for the A. fumigatus and P. aeruginosa interaction

Adjusted for baseline FEV_1 , only chronic *A. fumigatus* infection was associated with a significantly increased risk of pulmonary exacerbations (*RR 1.40, P= 0.065*)

Fungal - bacterial interactions

Co-species biofilm formation increases drug resistance of both

- Both Pa and Af possess the ability to form multicellular biofilm consortia, making it difficult to eradicate the infection
- Pa could significantly impede filamentous growth and biofilm formation in Af, by affecting the intercellular communication

Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium

Jose A. G. Ferreira^{1,2na}, John C. Penner^{1nb}, Richard B. Moss³, Janus A. J. Haagensen⁴, Karl V. Clemons^{1,2}, Alfred M. Spormann⁴, Hasan Nazik^{1,2,5}, Kevin Cohen¹, Niaz Banaei⁶, Elisabete Carolino⁷, David A. Stevens^{1,2}*

Non-mucoid CF isolates (NMuc-CF) are more inhibitory to formation of Af biofilms than mucoid isolates (Muc-CF)

The effect of Pa culture on Af biofilm formation

Aspergillus fumigatus enhances elastase production in *Pseudomonas aeruginosa* co-cultures

Karen Smith¹, Ranjith Rajendran², Stephen Kerr², David F. Lappin², William G. Mackay¹, Craig Williams¹ and Gordon Ramage^{2,*}

- The presence of Af biofilm increases the production of elastase from Pa in a biofilm model
- This may have a role in the damaging pathology associated with the lung tissue
- Co-colonization with these two organisms may result in a poorer prognosis

P. aeruginosa and A. fumigatus on solid media

Pa inhibits Af filamentation in a non-contact distance dependent manner

The growth of Af for 5-mm and 10-mm spacing is inhibited in close proximity to *Pa*

Growth recovered when the discs were placed 20 mm apart

The growth *Pa* isolates also appeared to be slightly reduced by the presence of Af, suggesting the **complex interplay between these two species**

RESEARCH ARTICLE

Biofilm Filtrates of *Pseudomonas aeruginosa* Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed *Aspergillus fumigatus* Biofilms via Apoptosis

Fazal Shirazi¹, Jose A. G. Ferreira^{2,3}, David A. Stevens^{2,3}, Karl V. Clemons^{2,3}, Dimitrios P. Kontoyiannis¹*

- Pa culture filtrates depresses metabolism, damages membranes and inhibits biofilm Af formation
- Concurrent colonization with both Pa and Af in CF patients leads to further decline in PFT's compared to mono-colonization with either microbe

RESEARCH ARTICLE

Open Access

CrossMark

Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis

Emma Reece¹, Ricardo Segurado², Abaigeal Jackson³, Siobhán McClean^{4,5}, Julie Renwick^{1*} and Peter Greally^{3,6}

Co-colonization Pa-Af was associated with:

- \checkmark 14% reduction in FEV₁ (*p* = 0.016)
- ✓ more exacerbations (p = 0.042)
- ✓ more hospitalizations (p = 0.023)
- ✓ more antimicrobial usage (p = 0.014)

Characteristics of *A. fumigatus* in association with *S. maltophilia* in an *in vitro* model of mixed biofilm

Mixed-biofilm:

- The cell wall is thicker in the presence of the bacteria
- There is more significant chronic inflammation
- Understanding how this microenvironment operates may provide important insight to the development of effective anti-inflammatory therapies

Novel immunologic classification of aspergillosis in adult CF

	RT-PCR	Galacto- mannan	Asp. Specific IgE	Asp. Specific IgG
Class 1 No disease	+/-	-	-	=
Class 2 ABPA	+	+	†	†
Class 3 Asp. sensitized	+/-	-	†	=
Class 4 Asp. bronchitis	+	+	-	†

Aspergillus bronchitis in CF

- 6 patients with CF and Af in sputum culture but not meeting criteria for ABPA, with acute/subacute clinical deterioration
- No response to appropriate antibiotic treatment but good response to antifungal medications
- Antifungal therapy should be considered during respiratory exacerbations and Af isolation when there is no response to appropriate antimicrobial therapy

Aspergillus sensitization

- It has been shown to be associated with reduced FEV₁ in individuals with CF, but it is not clear if:
 - this is a causal relationship or an epiphenomenon
 - It is amenable to antifungal therapy or any immuno-modulatory treatment
 - It is a precursor to ABPA or a separate distinct aspergillosis phenotype within CF

Factors Effecting Impact of Aspergillus fumigatus Sensitization in Cystic Fibrosis

Senthooran Kathirgama Kanthan, BSc, Andrew Bush, MD, Michael Kemp, MSc, and Roger Buchdahl, MD^{2*}

Methods and Aims:

- To examine the effect of Af sensitization* (Afs) on PFT's and growth using a retrospective cohort analysis over two 5-year study periods
 - > 1996–2000 (19 Af cases and 19 controls)
 - 2001–2005 (24 Af cases and 23 controls)
- To examine the impact of changing treatment schedules over these periods

^{*}defined as Af specific RAST 17.5 iu/ml + total serum IgE level 150 iu/ml

Factors effecting impact of Af sensitization in CF

- Afs cases had lower FEV₁% compared to matched controls
- Afs cases in the 2001 cohort, compared to the 1996 cohort:
 - had a higher FEV₁%
 - were prescribed significantly more oral antifungal treatment
- The use of antifungal treatment is associated with better lung function

Antifungal therapy to treat *Aspergillus* colonization or infection in CF patients

Study	Patients	Intervention	Outcome
Hilliard et al. [32]	n=21; median 11.3 (5-16) years. Mixture of ABPA and non-ABPA subjects.	All children received voriconazole for a median of 22 (1-50) weeks.	Significant increase in FEV ₁ and FVC over the study period in ABPA subjects only.
Shoseyov et al. [33]	n=6; median 14 (10-30) years,	Oral itraconazole for 4 months up to 2 years. One patient also received iv Ambisome.	All experienced some improvement in clinical parameters, FEV ₁ % predicted improved in all but one.
Kanthan et al. [31]	n=85; 1996 cohort, Af cases, n=19, median age 13.66 (9.78–15.99) years; controls n=19, median age 12.44 (9.02–14.96) years, 2001 cohort, Af cases n=24, median age 12.58 (9.61–16) years; controls n=23, median age 14.61 (12.68–15.29) years.	Observational cross-sectional cohort study using two cohorts of patients (1996–2000 and 2001–2005).	Patients in the 2001 cohort received more antifungal therapy and had a higher FEV1% predicted compared to the 1996 cohort.
Aaron et al. [30]	n=35; enrolled patients 6 years and older, mean age 25 years in both groups.	Oral itraconazole for 24 weeks or placebo.	No difference in exacerbation rates, FEV ₁ % predicted or QOL between

Treatment of Aspergillus fumigatus in Patients with Cystic Fibrosis: A Randomized, Placebo-Controlled Pilot Study

Shawn D. Aaron^{1*}, Katherine L. Vandemheen¹, Andreas Freitag², Linda Pedder², William Cameron¹, Annick Lavoie³, Nigel Paterson⁴, Pearce Wilcox⁵, Harvey Rabin⁶, Elizabeth Tullis⁷, Nancy Morrison⁸, Felix Ratjen⁹

Objective: to determine whether treatment directed against Af improves PFT's and clinical outcomes in patients with CF

N= 35 CF patients, chronically positive for Af were centrally randomized to receive for 24 weeks

- ■oral itraconazole 5 mg/kg/d (n = 18)
- ■placebo (n = 17)
- Primary outcome: proportion of patients who experienced a respiratory exacerbation requiring IV Abx: no difference
- Secondary outcomes: changes in FEV₁ and QoL: no difference

Problematic:

- 1- Adequate plasma levels were achieved in only half of the patients
- 2- Itraconazole resistance was not tested
- 3- Small number of patients (17 and 18 patients!), short time

