

29th January 2018 BRCA Tumour Testing Masterclass - Jerusalem

Review of methodologies for tumor testing; highlighting experience from University Hospital Cologne

29.01.2018 | Carina Heydt

- How to conduct BRCA tumour testing:
 - Preparation of tissue for testing (Macro-dissection, DNA extraction & quantification)
 - Review of available methodology
 - Demonstration of commercial kits and equipment
 - Sequencing
 - Factors which may influence your choice of methodology/kit/equipment
 - Ensuring a good quality test/ result

Is it possible to use your existing germline process for sporadic tumour material?

Germline vs. somatic mutations

Germline mutation

- Present in all body cells
- heterozygous
- Can be inherited
- Cause cancer family syndrome
- >50% Allele frequency of mutation

Somatic mutation

- Occur in tumour tissue only
- Cannot be inherited
- Allele frequency of mutation depends on percent of tumour cells (>10%) and normal cells
- Mutation detection depends on quality of tumour material (FFPE)

http://www.selectscience.net

http://www.minalevidds.com

http://www.braintumour.ca

How is the tissue prepared for DNA extraction?

Histological check by pathologist

- Buffered formalin is essential
- Examining haematoxylin and eosin (HE) stained slide
- Highlighting the tumour area precisely
- Little as possible normal cells should be included
- Somatic mutations occur in tumour tissue only
- Pen should be indelible
- Estimating of tumour cell content (Ratio normal/tumour cells)
- At least 10-20% depending on method used

Microscopic examination

Tumour area and tumour cell percentage estimated by three different pathologists

Section cutting for macrodissection

- Three to nine 10 µm thick slides depending on size of tumour area
- Avoid cross contamination between samples
- Use fresh blade for each tissue block
- Clean water bath

Deparaffinization and macrodissection of tumour area

Importance of exact macrodissection

Institute B

Institute C

Platform	EGFR mutation status	allele frequency %	DNA conc. (ng/μl)
Institute B	19: c.2236_2250del p.E746_A750del	14	17,32
Institute C	19: c.2236_2250del p.E746_A750del	54	3,78

How is the DNA extraction step conducted?

Options for DNA extraction methods

Automated systems

QIAcube (Qiagen)

QIAsymphony SP (Qiagen)

Maxwell 16 (Promega)

InnuPure C16 (Analytik Jena)

Manual kits

- QIAamp DNA FFPE Tissue Kit (Qiagen)
- RecoverAll[™] Total Nucleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific)
- ReliaPrep™ FFPE gDNA Miniprep System (Promega)
- Custom FFPE DNA extraction methods

and many more

Options for DNA extraction methods

- automated DNA extraction on different devices leads to different yields
- important for the extraction of small biopsies (up to 75% of cases in lung cancer diagnostics)

Options for DNA extraction methods

Performance of single-plex PCR:

Performance of multi-plex PCR:

⇒ transition **G>A**

⇒ transition **T>C**

- formalin fixation leads to DNA artefacts by deamination
- Deamination of cytosine leads to uracil, deamination of adenine to hypoxanthine
- Wrong bases are incorporated during PCR
- Look like point mutation
- All types of transition may occur: C>T, G>A, A>G, T>C

Key issues with formalin-fixed paraffin-embedded (FFPE) DNA extraction

- Buffered formalin is essential
- Precise highlighting of tumour area on HE stained slide by pathologist
 - Varying tumour cell content, for NGS > 10%
 - Mutations in tumour cells only
- Exact macrodissection of tumour area with scalpel
- You have to avoid cross-contamination during section cutting with a microtome and during macrodissection with other samples
- Complete deparaffinization and lysation
- Use the system that give the highest DNA quality and quantity and best results in downstream applications
- Avoid too high salt concentration in DNA solution
- You have to keep in mind that:
 - Formalin leads to artefacts by deamination (G<>A and C<>T artefacts)
 - FFPE DNA is mostly highly fragmented
 - Varying quality of FFPE material depending on tissue degradation and appropriate formalin fixation

Is there a minimum amount of DNA needed to continue to the next step?

DNA quantification methods

UV absorbance

NanoDrop[®] (Thermo Fisher Scientific)

Fluorescent dye-based quantification

- Qubit® 2.0/3.0 Fluorometer (Thermo Fisher Scientific)
- –Quantus™ Fluorometer(Promega)
- Quant-iTTM PicoGreen[®] dsDNA Assay(Thermo Fisher Scientific)

DNA quantification methods

- qPCR (custom primers)
 - −SsoFastTM EvaGreen[®] Supermix (BioRad)
 - -GoTaq® qPCR Master Mix (Promega)

- qPCR (commercially available)
 - GeneRead DNA QuantiMIZE Kit (Qiagen)
 - KAPA hgDNA Quantification and QC Kit (KapaBiosystems)
 - -TruSeq FFPE DNA Library Prep QC Kit (Illumina)
 - Agilent NGS FFPE QC Kit (Agilent)

Manufacturers of FFPE tumour testing assays mostly advice you which DNA quantification you should use with their assay.

Comparison of quantification methods

- 20 ng DNA extracted with the Maxwell system and determined with each of the measurement techniques of were amplified
- ⇒ no difference in amplification
- ⇒ the same is true for multiplex PCR

What are the factors involved in choosing a tumour *BRCA* assay?

Parallel sequencing – next generation sequencing (NGS)

- Whole genome = too much information
 - difficult regions, e.g. repetitive regions, cannot be avoided
 - costs are high, not suited for bench-top systems
 - extensive bioinformatics needed for evaluation and data storage

HQ DNA

- Whole exome = exons and adjacing splice-sites
 - no complete coverage of all gene regions
 - some fusions can't be detected

HQ and HQ FFPE DNA

- Targeted sequencing = gene panel
 - defined target regions
 - PCR-based or hybridization-based enrichment
 - detection of gene fusions and copy number changes is possible

HQ and FFPE DNA

BRCA2: 27 Exons

Nature Reviews | Cancer

- Two large genes
- All positions are relevant for tumour testing

Hybridization of biotinylated probes to targeted regions. Enrichment using streptavidin beads.

PCR-based

- Less chemicals required
- No DNA fragmentation required
- Faster and cheaper
- More robust and easy
- Date interpretation easier
- Assays for FFPE Material available
- Low DNA input
- Multiplexing is limited
- Polymerase read errors
- Amplification of FFPE fixation artefacts
- Duplicate reads
- Can not detect fusion events
- Detection of copy number changes might be difficult

Hybridization-based

- Easier to add new targets
- 1 panel for all entities
- Detection of gene fusions and complex events
- Fixation artefacts are avoided
- Less rounds of amplification
- Better duplicate filtering
- Expensive and complex procedure and data interpretation
- Not specifically designed for FFPE material
- Higher DNA input (>50 ng)
- 20% of samples have <50 ng of DNA
- Strong bias with LQ FFPE DNA
- Use of larger Benchtop-Sequencer like NextSeq 500

PCR-based

- Multiplexing is limited
- Polymerase read errors
- Amplification of FFPE fixation artifacts
- **Duplicate reads**
- Can not detect fusion events
- Detection of copy number changes might be difficult

Hybridization-based

- Usable with FFPE material
- SureSelect XT (HS) (Agilent)
- TruSight Exome (Illumina)
- TST170 (Illumina)
- and more
- Use of larger Benchtop-Sequencer NextSeq 500

Available PCR-based BRCA assays for FFPE material

Commercial Kits

- Ion AmpliSeq™ BRCA1 and BRCA2
 Panel or Oncomine BRCA Research
 Assay (Thermo Fisher Scientific)
- BRCA tumor MASTR plus Dx (Multiplicom - Agilent)
- TruSeq Amplicon BRCA1 and BRCA2 (Illumina)
- Archer VariantPlex BRCA assays (Archerdx)
- GeneRead DNAseq Targeted Panel V2 - Human BRCA1 and BRCA2 Panel (Qiagen)
- QIAseq Targeted DNA Panel (V3 Chemistry) - Human BRCA1 and BRCA2 Panel (Qiagen)

Lab Developed Assays

- Targeted sequencing using smMIP (molecular inversion probes)¹
- Other lab developed NGS sequencing assays

How is the GeneRead library from Qiagen prepared and constructed?

GeneRead DNAseq Targeted Panel V2 - Human *BRCA1* and *BRCA2* Panel (Qiagen)

Multiplex PCR:

- GeneRead DNAseq Targeted Panel V2 Human BRCA1 and BRCA2 Panel (NGHS-102X)
- GeneRead DNAseq Panel PCR Reagent V2

Library Prep:

- GeneRead DNA Library I Core Kit (for Illumina)
- GeneRead DNA I Amp Kit (for Illumina)
- Nextflex-96[™] DNA Barcodes (96 Barcodes for Illumina BIOO Scientific)

Or

GeneRead DNA Library I Kit (96) including 96 Barcodes for Illumina (Qiagen)

Or

QIAseq 1-Step Amplicon Library Kit (96) including 96 Barcodes for Illumina (Qiagen)

GeneRead DNAseq Targeted Panel V2 - BRCA1 and BRCA2 Workflow Institute of Pathology, University Hospital Cologne

Library Preparation

How are other PCR-based libraries prepared and constructed?

Thermo Fisher Scientific and Multiplicom BRCA Assays

Thermo Fisher Scientific

https://www.thermofisher.com/

Multiplicom (Agilent)

- Multiplex PCR of target regions
- Removal of PCR duplicates not possible
- Fixation artefacts cannot be distinguished from real mutations
- No Molecular Barcodes

TruSeq Amplicon - Cancer Panel (Illumina)

- Hybridization of Cancer Panel oligonucleotide probes
- Dual strand sequencing allows easy differentiation of damage artifacts from FFPE treatment from true somatic mutations.
- No molecular barcodes

Molecular barcodes

→ Low frequency variant detection, removal of PCR duplicates → unique reads

- HaloPlex Agilent
- MBC Adapter Archer
- QiaSeq Targeted Panels Qiagen

http://www.imgm.com/images/imgm/ScientificOverview/MGx-Overview_Bild-LEA-Seq.png

Archer Variant Plex and QiaSeq Targeted Panel (Qiagen)

Archer Variant Plex

http://archerdx.com/home/workflow

- Single Primer extension
- Molecular Barcodes
- Removal of PCR duplicates and fixation artefacts

QIAseq (Qiagen) **Enzyme-based random DNA fragmentation** End repair and A tailing Adapter ligation/Library construction (incorporation of adapters, molecular barcodes, and sample indexes) Add GSPs and UP* Target enrichment by SPE Add indexes and UP* Universal PCR amplification Sample indexing and amplification http://www.giagen.com

Which devices and methods can be used for the different quality checkpoints during your library preparation?

Checking the correct fragment size of multiplex PCR and library

2100 Bioanalyzer Instruments (Agilent)

QIAxcel Advanced System (Qiagen)

4200 TapeStation strument (Agilent)

Fragment Analyzer™
(Advanced Analytical Technologies)

Or conventional agarose gels

Multiplex PCR and library

Has the PCR worked?

Has the library worked?

Multiplex-PCR

Library quantification methods

- Fluorescent dye-based quantification
 - Qubit® 2.0/3.0 Fluorometer (Thermo Fisher Scientific)
 - Quantus™ Fluorometer(Promega)
 - Quant-iT[™] PicoGreen[®] dsDNA Assay (Thermo Fisher Scientific)

- SsoFastTM EvaGreen® Supermix (BioRad)
- GoTag® qPCR Master Mix (Promega)

- qPCR (commercially available)
 - KAPA Library Quantification Kit (Roche)
 - QIAseq Library Quant Array (Qiagen)
 - NEBNext® Library Quant Kit for Illumina® (NEB)
 - qPCR NGS Library Quantification Kit (Agilent)

What are the options for performing sequencing?

Sequencing Instruments

Ion PGMTM System (Thermo Fisher Scientific)

MiniSeq[™] System (Illumina)

GeneReader NGS System (Qiagen)

Ion S5[™] System (Thermo Fisher Scientific)

Sequencing Platforms - Performance

Comparison of two different platforms in 2012/13: sequencing of homopolymeric regions

UNIKLINIK MiSeq Sequencing

Preparing libraries for sequencing

Normalisation

Pooling

Denaturation with NaOH

Dilution to 8 - 12 pM

Adding PhiX control spike-in

Loading onto the MiSeq cartridge

MiSeq (Illumina)

Quality Control during each Individual Run

- Evaluation of sample quality/quantity
- DNA concentration (Qubit/qPCR)
- Fragment size (PCR/Library)
- Separation of pre- and post working areas
- Within-run controls

- Negative control (without DNA)
- Negative control (with extraction reagents, when lot- no. changes)
- Change of barcodes between runs

Control of run parameters

Optimal Clustering
 Overclustered

- Quality of base calling (Q30 Score)
- Cluster density (CD)
- Cluster passing filter (CPF)
- Coverage (≥ 200)
- Allele frequency (≥ 5% for mutation calling)

Can you detect exon duplications and deletions of the BRCA1/2 genes in sporadic ovarian cancer samples?

Inherited genomic rearrangements of BRCA1 and BRCA2

UNIKLINIK Detection of copy number changes and exon duplications and deletions by MLPA (MRC-Holland)

MLPA technology

Statement from MCR-Holland

Is it possible to use DNA extracted from paraffin coupes for MLPA?

Yes. You can download a protocol for DNA extraction from formaldehyde-treated, paraffin-embedded tissues (FFPE) here. We have been notified that the extraction of DNA from paraffin by other methods did not always result in satisfactory results.

High quality: acceptable without reviewing.

improve results.

Low quality: failed samples → unsuitable, REJECT. Coffalvser.Net gives information to solve root cause

Intermediate-quality: view data and recommendations to

Preliminary signal sloping (PSLP)

Reference sample quality (RSO)

Reference probe quality (RPQ)

Coffalyser analysis score (CAS)

Final signal sloping (FSLP)

29.01.2018 | Carina Heydt

What are the most important pieces of advise you can give to someone starting *BRCA* tumour testing?

- Correct estimation of tumour cell content and highlighting of the tumour area
- Precise macrodissection with new scalpel for each case → avoid cross contamination
- Choose a DNA extraction method with good DNA quality and quantity that works well in downstream applications
- Negative control (no DNA) running alongside samples through library preparation and sequencing
- Correct handling of beads during purification steps
- Barcodes should be changed between runs
- The amplicon coverage > 200x
- Allelic fraction of mutation >5%
- Validating the whole process from DNA extraction to data interpretation as a whole

It is important to choose 1 method, with which you have good experience. Validate the chosen method and then use only this validated method!

Thank you for your attention – Questions?

Institute of Pathology, Cologne

Reinhard Büttner

Jana Fassunke

Michaela A. Ihle

Birgid Markiefka

Sabine Merkelbach-Bruse

Roberto Pappesch

Jan Rehker

Janna Siemanowski

Svenja Wagener

Molecular Pathology Diagnostics Team of Sabine Merkelbach-Bruse