Factor VIIa-Antithrombin complex levels and Factor Xa generation in CAD patients

Israel Society of Thrombosis and Hemostasis - Autumn Symposium
Ramot Hotel September 14-16, 2017

Francesco Bernardi
University of Ferrara Italy
Coagulation inhibition by Antithrombin

Antithrombin (Serpin)

Tissue Factor

VIIa

IXa VIIIa

Xa Va

Thrombin
The FVIIa AT Complex: milestones

- Antithrombin III (AT) inhibits FVIIa when bound to TF and not as free FVIIa
 Lawson et al JBC 1993 Rao et al Blood 1993

- Compared to TFPI, AT is a poor inhibitor of FVIIa-TF

- FVIIa-AT complex is relatively abundant in plasma (2% of plasma FVII antigen)
 Smith et al. JTH 2007 (abst)
Recombinant human factor VIIa (rFVIIa) is cleared by antithrombin in hemophilia patients

The rFVIIa-AT complex formation was responsible for 65% of the rFVIIa clotting activity clearance after administration in HA patients.
Levels of FVIIa-AT generated in vivo in “High TF and low TF” mice following administration of rFVIIa

LPS administration caused a 600% increase in TF (HTF) but only 25% increase in FVIIa-AT complex concentration

Modest effect of TF on FVIIa-AT levels?

The FVIIa AT Complex: open questions

TF, either circulating or intravascular, or some other factors in blood, are responsible for a relatively rapid inactivation of FVIIa by AT in vivo.

- Could AT be a significant regulator of FVIIa function and turnover?
- Which is the physiological significance of this inhibition?
- Is the circulating levels of FVIIa-AT complex an indirect indicator of intravascular TF exposure in vivo?
Factor VIIa-antithrombin complexes in patients with arterial and venous thrombosis

Spiezia et al TH 2010

lower in patients with acute thrombosis than previous thrombosis

Factor VIIa-antithrombin complexes plasma levels in cancer patients with and without thrombosis

Spiezia et al Thr Res 2012

higher in patients with active cancer
"Slightly increased plasma VIIaAT concentrations observed after MI may reflect processes that occur in connection with the acute event…"

“Plasma VIIaAT concentration had no predictive value for future CVD in our study population”
FVIIa-AT plasma levels in early and late severe preeclampsia
Luci Maria Sant Ana Dusse et Al Clinica Chimica Acta June 2017

(P=0.046)
The Factor VIIa - antithrombin complex concentration in plasma predicts mortality in patients with coronary atherosclerosis

* : by χ^2 for linear trend.

Martinelli et al 2016
The Factor VIIa - antithrombin complex concentration in plasma predicts mortality in CAD patients

Martinelli et al 2016
The Factor VIIa - antithrombin complex concentration in plasma predicts mortality in CAD patients with history of previous Myocardial Infarction

Martinelli et al 2016
Contribution of F7 Genotypes to FVII levels and Risk of Myocardial Infarction

Bernardi et al ATVB, 1996

FVII genotypes predict FVIIa-AT complex levels

<table>
<thead>
<tr>
<th>Genotype</th>
<th>FVIIa-AT (pM)</th>
<th>FVIIa (mU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1/A1</td>
<td>90.0 (86.5-94.6)</td>
<td>53.5 (49.9-57.4)</td>
</tr>
<tr>
<td>A1/A2</td>
<td>73.7 (68.7-79.0)</td>
<td>37.7 (33.8-42.5)</td>
</tr>
<tr>
<td>A2/A2</td>
<td>57.4 (46.1-72.2)</td>
<td>11.5 (6.82-19.3)</td>
</tr>
</tbody>
</table>

P<0.001 for FVIIa-AT
P<0.001 for FVIIa by χ² for linear trend
TF genotypes predict FVIIa-AT complex levels

<table>
<thead>
<tr>
<th>Carrier TF -603A allele</th>
<th>n</th>
<th>FVIIa-AT</th>
<th>P *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier A</td>
<td>483</td>
<td>86.2 (82.4-90.1)</td>
<td>0.013</td>
</tr>
<tr>
<td>GG</td>
<td>161</td>
<td>77.0 (71.5-83.0)</td>
<td></td>
</tr>
</tbody>
</table>
GENETIC DETERMINANTS OF FVIIa-AT PLASMA LEVELS AND SURVIVAL

TF

<table>
<thead>
<tr>
<th>β-coefficient</th>
<th>-0.134 (-0.222 – -0.046)</th>
<th>P=0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>with 95%CI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FVII

<table>
<thead>
<tr>
<th>β-coefficient</th>
<th>-0.252 (-0.334 – -0.171)</th>
<th>P<0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>with 95%CI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TF and *FVII* β-coefficients were calculated with 95% confidence intervals (95%CI) and tested for statistical significance using the log-rank test.

TF

- A allele carrier

<table>
<thead>
<tr>
<th>Total Survival (%)</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

P = 0.047 by Log Rank test

FVII

- A2 allele carrier

<table>
<thead>
<tr>
<th>Total Survival (%)</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

P = 0.391 by Log Rank test

Sex- and Age-adjusted Hazard Ratio (HR):

- **TF**
 - A2 carrier versus A1A1: 1.17 (0.75-1.83)
 - GG versus A carrier: 0.52 (0.30-0.93)

- **FVII**
 - A2 carrier versus A1A1: 1.17 (0.75-1.83)
 - GG versus A carrier: 0.52 (0.30-0.93)
What about function?
Thrombin generation parameters and FVIIa-AT levels

<table>
<thead>
<tr>
<th></th>
<th>FVIIa-AT < 79 pmol L⁻¹ (n = 122)</th>
<th>FVIIa-AT ≥ 79 pmol L⁻¹ (n = 150)</th>
<th>P †</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag time (s)</td>
<td>56.3 (54.1–58.0)</td>
<td>57.4 (55.7–59.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Time to peak (s)</td>
<td>142.6 (139.8–146.9)</td>
<td>141.2 (138.4–144.0)</td>
<td>NS</td>
</tr>
<tr>
<td>Peak (Rfu/s)</td>
<td>6.36 (6.17–6.55)</td>
<td>6.82 (6.55–7.03)</td>
<td>0.009</td>
</tr>
<tr>
<td>ETP (Rfu)</td>
<td>854.1 (837.2–871.3)</td>
<td>906.9 (880.1–925.2)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The median level (79 pmol L⁻¹) was used as threshold value.

High plasma levels of FVIIa-AT are associated with an increased thrombin generation (Peak and ETP).

Martinelli et al 2016
FXa generation in CAD patients’ plasma

Is FXa generation (at low TF concentration) able to reveal hypercoagulability features in relation to the FVIIa-AT concentration?

Quartiles FVIIa -AT

First <59pM Fourth >119pM

AUC (Rfu)
(P=0.007*)

FXa generation is higher in patients with high FVIIa-AT complex levels in plasma

*By ANOVA with polynomial contrasts for linear trend, confirmed after adjustment for traditional cardiovascular risk factors
High FVIIa-AT levels were associated with a greater risk of mortality in patients with stable CAD. A larger increase of FVIIa-AT levels was associated with non-fatal cardiovascular events during the follow-up.

FVIIa-AT complex levels may predict long term outcomes in the setting of secondary prevention of CAD.

High FVIIa-AT levels correlated with an increased thrombin generation with an increased FXa generation, particularly in the early phase.

FVIIa-AT levels were strongly associated with the concentration of Apo C-III, a recognized risk factor for ischemic heart disease.
FVIIa- AT complex levels, genotypes and cardiovascular risk

CONCLUSIONS(2)

- F7 and TF Genotypes predict FVIIa-AT levels in plasma
- Only TF Genotypes were associated with risk of mortality in patients with stable CAD
- The chr 11 SNP rs964184 -tagging APOC3 locus and susceptibility to CVD- may influence FVIIa-AT levels (consistent with the effect on Apo C-III concentration)

Genetic and biochemical findings indicate FVIIa-AT complex levels as marker of hypercoagulability and cardiovascular risk mediated by TF and lipoprotein/lipid components