

HCC: Tumor markers

Oren Shibolet, MD

Liver Unit, Department of Gastroenterology and Liver Disease, Tel-Aviv Sourasky Medical Center

March 2016

Donald J. Trump @ @realDonaldTrump

in streezing and snowing in New York-we need global warming!

1:24 PM - 7 NOVEG12

₹₹ 2,257

896

Overview

Epidemiology of HCC-1 min

Surveillance guidelines-1min

Current Markers for HCC-6 min

The future-1 min

Summary-1 min

Trends in Incidence and Death Rates 1994-2015

Annual Report to the Nation on the Status of Cancer, 1975-2012, Featuring the Increasing Incidence of Liver Cancer

A. Blythe Ryerson, PhD, MPH¹; Christie R. Eheman, PhD, MSHP¹; Sean F. Altekruse, DVM, MPH, PhD²; John W. Ward, MD³; Ahmedin Jemal, DVM, PhD⁴; Recinda L. Sherman, MPH, PhD, CTR⁵; S. Jane Henley, MSPH¹; Deborah Holtzman, PhD³; Andrew Lake, BS⁶; Anne-Michelle Noone, MS²; Robert N. Anderson, PhD⁷; Jiemin Ma, PhD, MHS⁴; Kathleen N. Ly, MPH³; MSH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MBH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MDH²; and Batter A. Crenia, PhD, MDH²; Lympa Barbarthy, MD, MDH²; and Batter A. Crenia, PhD, MDH²; All PhD, MDH²; and Batter A. Crenia, PhD, MDH²; All PhD, MDH²; and Batter A. Crenia, PhD, MDH²; All PhD, MDH²; and Batter A. Crenia, PhD, MDH²; All PhD, MDH²; All

HCC Progression

Chronic Liver Disease

•—— Cirrhosis

•—— HCC

Treatment allocation

Surveillance

Randomized controlled trial of screening for hepatocellular carcinoma

Tumor markers for diagnosis

Tumor Marker	Sensitivity (%)	Specificity (%)
α -Fetoprotein (AFP) ^{15–18}		
>20 ng/mL	41–65	80–94
>200 ng/mL	20–45	99–100
>400 ng/mL	<20	99–100
Lens culinaris agglutinin-reactive α-fetoprotein (AFP-L3) ^{24–27,a}	39–75	83–90
Des-γ-carboxyprothrombin (DCP) ^{29–31,b}	41–74	70–100
Glypican-3 (GPC-3) ^{36–39}	40–53	90–100
Proteomic profiling ^{40–43}	61–92	76–91

α-Fetoprotein (AFP)

Alpha feto protein (α -FP)

- Oncofetal antigen
- Abundant serum protein normally synthesized by the fetal liver
- -Re-expressed in certain types of tumors

Alpha-fetoprotein Prospective Cohort Studies

Author	No. of No. of cirrhotics HCC		PPV %	NPV %	Sensitivity %	Specificity %	
Pateron	118	14	33	-	50	86	
Oka	260	55	32	82	39	76	
Bolondi	313	61	46	85	41	82	
Tong	602	31	12	99	41	95	
Chalasani	285	27	30	-	63	87	

Surveillance guidelines

EASL-EORTC

- Patients at high risk for developing HCC should be entered into surveillance programs. Groups at high risk are depicted in Table 3 (evidence 1B/3A; recommendation 1A/B)
- Surveillance should be performed by experienced personnel in all at-risk populations using abdominal ultrasound every 6 months (evidence 2D; recommendation 1B)

AASLD

- 1. Patients at high risk for developing HCC should be entered into surveillance programs (Level I). The at-risk groups for whom surveillance is recommended are identified in Table 3.
- 3. Surveillance for HCC should be performed using ultrasonography (level II).
- 4. Patients should be screened at 6 month intervals (level II).
- 5. The surveillance interval does not need to be shortened for patients at higher risk of HCC (level III).

Llovet JM et al 2011

Bruix & Sherman 2010

Recommendations

"Analysis of recent studies show that alpha-fetoprotein determination lacks adequate sensitivity and specificity for effective surveillance (and for diagnosis)"

Sherman M et al Hepatology 2010

"Accurate tumor biomarkers for early detection need to be developed. Data available with tested biomarkers (i.e. AFP, AFP-L3 and DCP) show that these tests are suboptimal for routine clinical practice (evidence 2D; recommendation 2B)"

Llovet JM et al 2011

Gonzalez SA et al. Clin Liver Dis 2012

Des-gamma carboxyprothrombin (DCP) in HCC

DCP Differentiates Cirrhosis from HCC

* Cutoff Values

DCP = 150 mAU/ml

Sens: 89%

Spec: 96%

PPV: 91%

NPV: 88%

AFP = 13 ng/ml

Sens: 62%

Spec: 76%

PPV: 78%

NPV: 71%

DCP vs. AFP

DCP AFP

	DCP (mAU/mL)		A	FP (ng	DCP AFP		
Cut-off values	40	100	20	100	200	40	20
Sensitivities (%)							
All tumors Tumor diameter:	58	44	62	33	26	82	
<3 cm	41	22	55	23	14	72	
3–5 cm	77	64	68	41	32	93	
>5 cm	95	91	78	60	56		99
Specificities (%)	97	100	93	99	100		91

Lectin-bound Alpha-fetoprotein AFP-L3

- The sugar chain structures of AFP obtained from patients with LC and HCC have different affinities for lectins
- One subspecies, Lens culinaris agglutinin (LCA)reactive AFP (AFP-L3) is more specific to HCC

Combinations?

DCP, AFP-L3 & AFP in combination only marginally improve detection of early HCC

Marker	Cutoff	Sensitivity, % (95% CI)	Specificity, % (95% CI)
All HCC (n = 419)			
AFP	20	59 (55-64)	90 (86-93)
DCP	150	74 (70-79)	70 (65-74)
AFP-L3%	10	42 (37-47)	97 (93-100)
AFP + DCP	AFP = 20 or	86 (82-89)	63 (58-67)
	DCP = 150		
Early stage HCC			
$(n = 208)^a$			
AFP	20	53 (46-59)	90 (87-93)
DCP	150	61 (55-68)	70 (65-74)
AFP-L3%	10	28 (22-34)	97 (93-100)
AFP + DCP	AFP = 20 or	78 (72-83)	62 (58-67)
	DCP = 150		

Performance Characteristics of Markers-Early Stage (n=52)

Marker	AUROC	Sens	Spec	+LR	-LR
AFP	0.81	64	88	8.5	0.38
14 ng/mL					
AFP-L3	0.71	50	88	4.5	0.56
3%					
DCP	0.93	92	93	13.9	80.0
150 mAU/ml					
Comb	0.94	90	91	10.7	0.11

DCP, AFP-L3 and AFP in combination only marginally improve detection of HCC

	AFP-L3%			DCP						
Analyte cut-off value	10%				ng/mL				AFP	
AFP range: ng/mL	<20	20–199.9			<20	20–199.9	≥200	All range	20 ng/mL	200 ng/mL
In all patients (G1, G2, and G3)										
Total number (HCC number)	241 (29)	111 (29)	20 (16)	372 (74)	241 (29)	111 (29)	20 (16)	372 (74)	372 (74)	372 (74)
Sensitivity	20.7%	37.9%	62.5%	36.5%	24.1%	44.8%	56.3%	39.2%	60.8%	21.6%
Specificity	93.4%	86.6%	100.0%	91.6%	89.2%	90.2%	100.0%	89.6%	71.1%	98.7%
PPV	30.0%	50.0%	100.0%	51.9%	23.3%	61.9%	100.0%	48.3%	34.4%	80.0%
NPV	89.6%	79.8%	40.0%	85.3%	89.6%	82.2%	36.4%	85.6%	88.0%	83.5%
In G2 and G3		_				_		_		_
Total number (HCC number)	228 (16)	95 (13)	9 (5)	332 (34)	228 (16)	95 (13)	9 (5)	332 (34)	332 (34)	332 (34)
Sensitivity	31.3%	53.8%	60.0%	44.1%	18.8%	38.5%	60.0%	32.4%	52.9%	14.7%
Specificity	93.4%	86.6%	100.0%	91.6%	89.2%	90.2%	100.0%	89.6%	71.1%	98.7%
PPV	26.3%	38.9%	100.0%	37.5%	11.5%	38.5%	100.0%	26.2%	17.3%	55.6%
NPV	94.7%	92.2%	66.7%	93.5%	93.6%	90.2%	66.7%	92.1%	93.0%	91.0%
			Sensitivit	у	Sį	pecificity		PPV		NPV
In all patients (G1, G2, and G3)										
AFP alone, ≥20 ng/mL			60.8%			71.1%		34.49	%	88.0%
AFP-L3% alone, ≥10%			36.5%	_		91.6%		51.99	%	85.3%
DCP alone, ≥7.5 ng/mL			39.2%			89.6%		48.3	%	85.6%
AFP + AFP-L3%			68.9%			66.4%		33.89		89.6%
AFP + DCP			70.3%			63.4%		32.3		89.6%
AFP-L3% + DCP		_	62.2%	_		82.6%		46.99		89.8%
AFP + AFP-L3% + DCP			77.0%			59.4%		32.09		91.2%

Tumor markers for other uses

- Transplantation
- Assessment of therapy

AFP Levels Impact on post OLT Survival

Kwon CHD et al. Dig Dis 2007, Mailey D et al Arch Surg 2011

des-gamma-carboxy prothrombin Levels Impact on OLT Survival

Tumor size ≤ 5 cm, ≤10 nodules (5-10 rule) and DCP ≤400 mAU/mL Fujiki M, et al. Am J Transplant 2009

AFP but not DCP response predict survival after TACE

The future

Gene profiling

New tumor markers and their uses

Summary

- HCC is the only major cancer who's incidence is increasing
- Currently only a minority of HCC patients are diagnosed at the curative stage.
- Tested biomarkers (i.e. AFP, AFP-L3 and DCP) are suboptimal for routine clinical practice
- There is a need to develop accurate tumor biomarkers for early detection, prognosis and tx assessment.

Thank You For Your Attention

פרופ' אורן שבולת

טלפון: 052-4266558 orensh@tlvmc.gov.il