

CF microbiology identification in the post genomic era

Dr. Yuval Geffen

Clinical Microbiology Laboratory

Rambam Health Care Campus

What have been changed in microbiology diagnosis over the last century?

The classic bacteriology dogma

- 1. Direct Microscopy
- 2. Culturing
- 3. Biochemically bacterial identification
- 4. Antimicrobial susceptibility tests

Limitations

- Long turnaround time (days to weeks)
- Need for highly skill technicians
- Difficulty in detecting newly emerging pathogens
- Clinically relevance of bacterial isolates
- Accuracy of in-vitro antibacterial testing

Questions from (a desperate) clinician to bacteriologist

- 1. I gave IV antibiotics according to recent culture and there is no response. Can you help with biofilm test?
- 2. Patient does not fulfill ABPA criteria. Can galctomannan or PCR help me (sputum ? BAL?)
- 3. Patient is completely well but has positive culture for mycobacterium. Is it really *M. abscessus*?
- 4. Last time we had to change antibiotics after 3 days due to lab results. Can we get faster response?
- 5. MALDI-TOF MS, Next generation sequencing. Is this the light at the end of the tunnel?

bioFILM PA Kit

 Biofilm growth & inoculation system (MBEC-Minimum Biofilm Eradication Concentration Assay)

 Growth of biofilm from organisms recovered from sputum sample and inoculation of bacteria

into wells

Results in SIR format –

12 Individual Antibiotics + 35 Antibiotic combinations

Planktonic												
Antibiotic	SIR											
GM/AZT	S	AK/AZT	S	TO/AZT	S	T/S/P/T	S	CP/P/T	S	ТО	R	
GM/CAZ	S	AK/CAZ	S	TO/CAZ	S	T/S/MER	S	C/MER	S	T/S	- 1	
GM/P/T	S	AK/P/T	S	TO/P/T	S	T/S/AZT	S	C/CAZ	S	С	S	
GM/CPE	S	AK/CPE	S	TO/CPE	S	T/S/CAZ	S	AK	- 1	CP	- 1	
GM/MER	S	AK/MER	S	TO/MER	S	CP/AZT	S	P/T	S	CAZ	S	
GM/CPE	S	AK/CPE	S	TO/CPE	S	CP/CT	S	AZT	S	CPE	S	
GM/T/S	- 1	AK/T/S	I	TO/T/S	S	CP/T/S	S	CT	S	MER	S	
GM/CT	S	AK/CT	S	TO/CT	S	CP/MER	S	GM	R			
Biofilm												
Antibiotic	SIR											
GM/AZT	R	AK/AZT	S	TO/AZT	-1	T/S/P/T	R	CP/P/T	R	ТО	R	
GM/CAZ	S	AK/CAZ	S	TO/CAZ	S	T/S/MER	R	C/MER	R	T/S	R	
GM/P/T	- 1	AK/P/T	S	TO/P/T	S	T/S/AZT	S	C/CAZ	R	С	R	
GM/CPE	R	AK/CPE	R	TO/CPE	S	T/S/CAZ	R	AK	R	СР	R	
GM/MER	R	AK/MER	S	TO/MER	R	CP/AZT	R	P/T	R	CAZ	R	
GM/CPE	R	AK/CPE	R	TO/CPE	S	CP/CT	S	AZT	R	CPE	R	
GM/T/S	R	AK/T/S	R	TO/T/S	S	CP/T/S	R	СТ	R	MER	R	

bioFILM-PA Clinical significance

- Antibiotic regimens based on biofilm testing did not differ significantly from regimens based on conventional testing in terms of microbiological and clinical responses.
- Current evidence is insufficient to recommend choosing antibiotics based on biofilm antimicrobial susceptibility testing

Evidence of *M. abscessus* biofilm in an infected CF lung

Qvist et al. (2013) J Cystic Fibrosis. 12, Supplement 1:S2

Questions from (a desperate) clinician to bacteriologist

- 1. I gave IV antibiotics according to recent culture and there is no response. Can you help with biofilm test?
- 2. Patient does not fulfill ABPA criteria. Can serology, galctomannan or PCR help me (sputum? BAL?)
- 3. Patient is completely well but has positive culture for mycobacterium. Is it really *M. abscessus*?
- 4. Last time we had to change antibiotics after 3 days due to lab results. Can we get faster response?
- 5. MALDI-TOF MS, Next generation sequencing. Is this the light at the end of the tunnel?

ABPA diagnosis

- Current techniques: skin test, total and specific IgE, sputum culture
- Signs and symptoms are non specific
- Cultures are often negative

Molecular diagnostics

DNA extraction

PCR

Targeted treatment

Identification

Specific detection of Aspergillus by nested PCR

Sensitivity

100 fg/ μ l= 1 CFU

 $(fg = 10^{-15} g)$

In BAL samples:

Sensitivity- 75%

Specificity- 100%

PPV-100%

NPV-87%

Galactomannan screening for ABPA

- Polysaccharides consisting of a mannose backbone with galactose side groups
- A component of the cell wall of Aspergillus and is released during growth
- Used to diagnose aspergillosis infections in serum, sputum and BAL
- GM sensitivity is <u>lower in patients with non invasive</u> manifestations of aspergillosis

Aspergillosis classification in CF patients

Combination of:

- Serologic tests (total IgE, Af specific IgE and IgG)
- Sputum real-time Aspergillus PCR
- Sputum GM

Three disease classes:

- 1. ABPA IgE/IgG个, PCR(+), GM(+)
- 2. Aspergillus sensitized- IgE个, PCR(+/-), GM(-)
- 3. Aspergillus bronchitis- IgG个, PCR(+), GM(+)

Questions from (a desperate) clinician to bacteriologist

- 1. I gave IV antibiotics according to recent culture and there is no response. Can you help with biofilm test?
- 2. Patient does not fulfill ABPA criteria. Can galctomannan or PCR help me (sputum? BAL?)
- 3. Patient is completely well but has positive culture for mycobacterium. Is it really *M. abscessus*?
- 4. Last time we had to change antibiotics after 3 days due to lab results. Can we get faster response?
- 5. MALDI-TOF MS, Next generation sequencing. Is this the light at the end of the tunnel?

Molecular diagnostics of NTM

PCR-RFLP (restriction fragment length polymorphism) analysis of the 65-kDa heat shock

protein gene

Confirmation

Tissue sample

DNA extraction

PCR amplification with Panbacterial rRNA primers

Database mining/BLAST analysis

Koh et al. (2011) Am J Respir Crit Care 183(3):405-410

Questions from (a desperate) clinician to bacteriologist

- 1. I gave IV antibiotics according to recent culture and there is no response. Can you help with biofilm test?
- 2. Patient does not fulfill ABPA criteria. Can galctomannan or PCR help me (sputum? BAL?)
- 3. Patient is completely well but has positive culture for mycobacterium. Is it really *M. abscessus*?
- 4. Last time we had to change antibiotics after 3 days due to lab results. Can we get faster response?
- 5. MALDI-TOF MS, Next generation sequencing. Is this the light at the end of the tunnel?

Fully automated molecular detection systems - Genexpert

Clinical Test Menu

- Two hour detection of MTB and resistance to rifampin
- Influenza viruses A&B
- MRSA
- Group B Streptococcus
- Detection of *C. difficile* toxin

Next-Generation Sequencing for Diagnosis of Complex Bacterial Infections

- Polymicrobial specimens remains a challenge for both culture-based and molecular techniques
- Next-Generation Sequencing = High-throughput sequencing
- Accelerate the sequencing process by producing thousands of sequences concurrently.
- Lower the cost of DNA sequencing
- Same day turnaround times
- Analyzing sputum samples from CF patients reveals welldescribed CF pathogens in specimens
- High sensitivity for low-prevalence or fastidious bacteria

MALDI-TOF MS:

Matrix Assisted Laser Desorption Ionization timeof-flight mass spectrometry

TOF=Time of Flight

MLDI-TOF workflow

5380.978 100 4365.504 7272.649 122

Summary

- Current CF diagnostic microbiology relies mostly on culture-dependent methods
- Results are significantly delays and biases towards the most numerous and easily cultured organisms
- Requires highly specialized personnel
- Culture-independent molecular diagnostics for direct detection of multiple pathogens in sputum could improve CF patient care. But, no comprehensive molecular test for CF samples.
- AST still lack good culture-independent solution.

Where do we go from here?

- Routine high throughput/ metagenomics analysis of clinical samples.
- Mass spectrometry incorporates multiplex RT-PCR step for target amplification.
- Mass spectrometry and molecular detection of specific resistance genes and resistant mechanisms

