What Is New in the Molecular Aspects of Lynch Syndrome?

C. Richard Boland, MD
Chief, Gastroenterology
Baylor University Medical Center, Dallas

Lynch Syndrome in Israel June 26, 2012

What are microsatellites?

- Simple repetitive DNA sequences
 - i.e., mononucleotide repeats (MNR), A_n, G_n, etc
 - also, dinucleotide repeats (DNRs), most often
 [CA]_n
 - also, longer repeats, tri- and tetra-nucleotide repeats
- In the absence of DNA MMR activity, they are very prone to <u>deletion</u> mutations (i.e., A₁₀ -> A₉)
 - this is MSI

Microsatellite Instability: all 5 mutated

MLH1 Immunohistochemistry

Practical Issues with IHC

- One sees <u>loss of expression</u> of the "culprit" gene product
- Occasionally, certain mutations will destroy enzymatic activity of the protein, and preserve immunoreactivity of the protein (i.e., falsely negative)
- Most (75-80%) MSI-H CRCs are due to epigenetic silencing of the hMLH1 gene
 - this is not Lynch syndrome

How to interpret the IHC: Why are 2 proteins lost when only one gene is mutated?

A Single mismatch

B Exonuclease complex and resynthesis

C Insertion/deletion loop and variations in MutL complexes

EARLY-ONSET CRC WITHOUT A FAMILY HISTORY SUGGESTING LYNCH SYNDROME

Unexpected Lynch Syndrome among young CRC patients

- 75 CRC patients with no more than one relative with CRC, all <50 years old (mean 34.5), no FAP/UC, all from BUMC
- MSI (pentaplex PCR of 5 mononucleotide repeats)
- IHC testing of tumor tissue; MSH2, MSH6, MLH1, PMS2
- (No germline testing)
- 72% in the distal sigmoid colon or rectum
- MSI in 21%; abnormal IHC in 21% (n=16)
 - MSH2: 3: all MSI
 - MLH1: 3: all MSI
 - PMS2: 5: all MSI
 - MSH6: 5 (and only 2/5 had MSI)
- KRAS mutations in 22% if MMR defective; 78% if MMR normal
- No BRAF mutations in any young CRC patient

Epicolon Collaboration: Early-Onset CRC

- 140 CRC patients ≤50 years old, Spanish consortium (Epicolon); MSI, IHC, germline mutations in MMR genes, and MUTYH germline mutations
- Positive family histories not excluded
 - 26% had a + FH of CRC; 5.8% Amsterdam+
- 11.4% had MSI (5 MNRs), 14.3% had abnormal IHC
- 75% of the CRCs were in the distal colon
- Identified MMR germline mutations in 11 (7.8%)
- Somatic methylation of MLH1 in 1 (0.7%)
- KRAS mutations in 28%, BRAF mutations in 3.6%

Epicolon Study of Early-Onset CRC

- Germline mutations
 - MLH1: 4 (2.8%)
 - MSH2: 1 (0.7%)
 - MSH6: 6 (4.3%) 2/6 were MSS
 - Biallelic MUTYH: 4 (2.8%)
- About 15% have DNA MMR defects
- Underscores the role of <u>MSH6</u> and <u>MUTYH</u> in young CRC patients

Summary: early-onset CRC without a Lynch Syndrome family history

- Tend to be distal lesions (rectum, sigmoid)
- 14-21% are "cryptic" Lynch Syndrome
- Prominent involvement of MSH6 and PMS2
 - MSH6 may not show MSI
- Most are still a mystery

Epigenetics

 Alterations in gene expression that do not involve a change in the nucleotide sequences

- Includes DNA methylation (which can silence gene expression)
- Changes in miRNA expression
 - master controllers of gene expression

DNA Hypomethylation in Cancer

- Global hypomethylation:
 - Feinberg + Vogelstein (Nature, 1983)
 - Widespread through the genome in CRC
 - Reduced methyl-cytosine content by 8-10% in colorectal cancers and adenomas compared with normal colon
 - Loss of methylation at CpG sites in repetitive elements (LINEs, etc)
 - function and mechanisms are uncertain
 - associated with chromosomal instability

DNA Hypermethylation in CRC

- CpG Island Methylator Phenotype (CIMP)
- Baylin + Issa (1999)
 - Silences promoters at CpG sites (about half our genes)
- Promoter methylation associated with ageing
 - also with cancer
 - distinction between these is unknown
- CRCs may evolve principally through CIMP
- Also, methylation-induced silencing of MLH1 causes acquired (non-Lynch syndrome) MSI in CRC

Buccal mucosa and hair follicle tissues also show MLH1 hypermethylation

Soma-wide Hypermethylation of MLH1 in a young patient with CRC

- 20 year old woman developed a 3 cm cancer in the descending colon, mucinous, Stage II
- MSI-H, loss of expression of MLH1, PMS2 and MSH6
- Negative family history
- No germline mutations in MLH1, MSH2 or MSH6
- MLH1 methylated in the tumor tissue (pyrosequencing, Deng-C)
 - Buccal mucosa DNA 22% methylated
 - Hair follicle DNA 48% methylated
 - PBL-LCL DNA methylated 14% and 8%, respectively
 - PBL methylation rose to 22% after 12 cycles of FOLFOX chemo
 - No methylation in either parent or brother
- Somatic LOH of the unmethylated allele in the tumor
 - Methylated allele was <u>paternal</u>

Soma-wide hypermethylation of MLH1 (cont.)

- 18 year old male, cancer in ascending colon (T3N1M0), MSI-H, loss of MLH1 and PMS2 in tumor, no FH, no mutation in MLH1
- Dense hemiallelic methylation (36-50%) in tumor, PBLs, buccal DNA, saliva, hair follicles; none in parents; methylated allele was maternal, somatic loss of the non-methylated paternal allele in the tumor.
- Summary of 15 patients with constitutional MLH1 epimutations:
 - ages range from 18-67; 8/15 under age 50
 - Only 1/12 had BRAF mutations; 3/11 had KRAS mutations
 - LOH of non-methylated allele in 8/13; 2 had missense mutation 2nd hit
- Mechanism uncertain, but acquired methylation of MLH1 is linked to a SNP in the promoter (-93G/A), and the AA or AG genotype has less affinity for transcription factors and is prone to methylation

Clinical Features of Soma-Wide Methylation of MLH1

- Uncommon (~1% of MSI tumors)
- May occur in young adults (half <50)
- Methylation of MLH1 promoter in all 3 germ tissues
- May act like Lynch Syndrome
 - produces early-onset CRC
 - full tumor spectrum unknown
- May be acquired on maternal or paternal alleles
- Tumors may occur after LOH or mutation of the unmethylated allele

Possible Mechanism for Familial Soma-wide Methylation

- Single family with dominant inheritance of constitutional epigenetic silencing of MLH1
- Linked to a rare SNP in the MLH1 promoter (c.-27 C>A)
- Soma-wide mosaic MLH1 methylation and transcriptional silencing
- Methylation erased in sperm, but reinstated in somatic cells of the next generation
- Affected haplotype harbors 2 SNPs in tandem: c.-27C>A and c.85G>T, but c.-27C>A reduced transcription in reporter assays
- Not present in our patient

FCC Categories

Familial Colorectal Cancer that is not Lynch Syndrome (FCC-type X)

- Collaboration with X. Llor (Univ. III, Chi)
- Four groups of colorectal cancers:
 - 1. Amsterdam +, MSS, n=22
 - 2. Amsterdam +, MSI-H (Lynch Syndrome), n=21
 - 3. Sporadic MSS, n=92
 - 4. Sporadic MSI-H, n=46
- Methylation analyzed at 5 validated promoters (CIMP); LINE-1 methylation; mutations in BRAF and KRAS
- Methylation Index (MI) calculated from the 5 promoters (>5-10% meth)
 - "Low-MI" if 1-3 promoters methylated
 - "High-MI" if 4-5 promoters methylated

Methylation Index (MI) in Syndrome X

Tumor Group	Low MI	High MI	
MSS HNPCC	100% (22)	0	
(Syndrome X)			
Sporadic MSS (92)	95.6% (87)	4.4% (4)	
Lynch Syndrome (21)	90.5% (19)	9.5% (2)	
	00.00/ (45)	07 40/ (04)	
Sporadic MSI (46)	32.6% (15)	67.4% (31)	

Line-1Methylation in Syndrome X

Tumor Group	% Line-1 methylation	Mean Rank (P =)
MSS HNPCC	60.08%	56.05 ()
(Syndrome X)		
Lynch Syndrome	66.29%	94.80 (p=.015)
Sporadic MSI	67.27%	105.41 (p=.001)
Sporadic MSS	65.13%	86.22 (p=.009)

RAS/RAF Mutations in Syndrome X

Tumor Group	BRAF	KRAS .
MSS HNPCC (22)	0	31.8% (7, all codon 12)
(Syndrome X)		
Lynch Syndrome (21)	0	9.5% (2, both codon 12)
Sporadic MSS (92)	2.2% (2)	39.2% (36; 25 codon12,
		11 codon 13)
Sporadic MSI (46)	28.3% (13)	4.4% (2 - codons12 + 13)

Genetic Alterations in Syndrome X

Familial CRC without DNA MMR inactivation:

- 1. Significantly lower degree of Line-1 methylation (i.e, less global methylation) than in all other groups
 - probably reflects global hypomethylation
- 2. No evidence for promoter methylation (CIMP)
 - not a cryptic form of familial CIMP
- 3. No BRAF mutations (consistent with absence of CIMP); KRAS mutations similar to sporadic CRC

When do loss of MMR proteins and MSI occur in Lynch Syndrome neoplasms?

- IHC and MSI testing on colorectal polyps from 34 Lynch Syndrome patients
 - 62 colorectal polyps (37 adenomas, 23 hyperplastic, 2 SSPs)
- MSI-H seen in 15/37 (41%) of adenomas, MSI-L in 8%;
- MSI in 0/21 hyperplastic polyps, 1/2 SSPs
- Abnormal IHC seen in 18/36 (50%) of adenomas, 0/21 hyperplastic polyps
- MMR defects tend to occur in larger polyps
 - present in 6/6 >10 mm, 2/7 if 5-9 mm, 7/22 if < 5 mm</p>
 - MSI in 48% if MSH2, 33% if MLH1, 25% if MSH6

Loss of MMR Protein in Adenoma

Yurgelun et al, CPR, 2012

Conclusions from Kloor & Yurgelun

- DNA MMR-deficient loci are common in LS
 - Not necessarily the precursors of the neoplasms
 - Very frequent; most probably do not survive
 - Do not look neoplastic
 - Distinct from aberrant crypt foci morphologically
- Adenomas seem to evolve in the same fashion as sporadic polyps, and the "second hit" occurs during evolution of the adenoma
 - These lesions appear to grow very quickly
 - Positive tests are helpful; one cannot interpret negatives

Thank you. Questions?