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ABSTRACT 
Schizophrenia is a serious mental disorder that affects 
up to 1% of the population worldwide. Traditional 
models of schizophrenia have emphasized dopaminergic 
dysfunction. Over the last 20 years, however, limitations 
of the dopamine model have become increasingly 
apparent, necessitating development of alternative 
models. Glutamatergic models are based upon the 
observation that the psychotomimetic agents such as 
phencyclidine (PCP) and ketamine induce psychotic 
symptoms and neurocognitive disturbances similar to 
those of schizophrenia by blocking neurotransmission 
at N-methyl-D-aspartate (NMDA)-type glutamate 
receptors. Because glutamate/NMDA receptors are 
located throughout the brain, glutamatergic models 
predict widespread cortical dysfunction with particular 
involvement of NMDA receptors throughout the brain. 
Further, NMDA receptors are located on brain circuits 
that regulate dopamine release, suggesting that 
dopaminergic deficits in schizophrenia may also be 
secondary to underlying glutamatergic dysfunction. 
Agents that stimulate NMDA receptor-mediated 
neurotransmission, including glycine-site agonists and 
glycine transport inhibitors, have shown encouraging 
results in preclinical studies and are currently undergoing 
clinical development. Encouraging results have been 
observed as well with agents such as metabotropic 
2/3 agonists that decrease resting glutamate levels, 
reversing potential disruption in firing patterns within 
prefrontal cortex and possibly other brain regions. 
Overall, these findings suggest that glutamatergic 
theories may lead to new conceptualizations and 
treatment approaches that would not be possible based 
upon dopaminergic models alone.
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Introduction 
Schizophrenia is a serious mental disorder that affects 
up to 1% of the population worldwide, and is one of the 
leading causes of chronic disability. Although causes of 
schizophrenia remain unknown, the disease has been 
extensively characterized from both a symptomatic and 
neurocognitive perspective, and much information has 
accumulated about elements such as genetic causation 
and longitudinal course. Although schizophrenia was 
once seen as a disease affecting only a few key brain 
regions and regionally discrete neurotransmitter sys-
tems such as dopamine, more recent findings implicate 
widespread cortical and subcortical dysfunction, sug-
gesting more generalized etiology. On a neurochemical 
level, antagonists of N-methyl-D-aspartate (NMDA)-
type glutamate receptors, such as phencyclidine (PCP) 
or ketamine, uniquely reproduce the symptomatic, 
neurocognitive and neurochemical aspects of the dis-
order, suggesting that regardless of underlying etiology, 
NMDA dysfunction represents a final common pathway 
leading from pathogenesis to symptoms. 

Clinical Phenomenology of 
Schizophrenia 
Symptoms of schizophrenia are typically divided into 
three main classes termed positive, negative and cog-
nitive. Positive symptoms consist of such items as sus-
piciousness/persecution, grandiosity, delusions, and 
unusual thought content and, in general, reflect features 
of the schizophrenia experience that are not shared by 
the general population. Negative symptoms, in con-
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trast, consist of symptoms such as lack of spontaneity, 
social/emotional withdrawal, poor rapport and blunted 
affect, and reflect features of normal experience that are 
reduced in individuals with schizophrenia. Cognitive 
symptoms – which are also referred to as disorganized 
symptoms or autistic preoccupation – consist of such 
elements as conceptual disorganization, disorientation 
and poor attention. Dopaminergic models of schizo-
phrenia account well only for positive symptoms of 
the disease. In contrast, glutamatergic models account 
much more fully for both negative and cognitive symp-
toms, and thus may serve as an etiological model for the 
syndrome as a whole.

Another key component of schizophrenia is neuro- 
cognitive dysfunction. When tested on basic IQ tests, 
such as the WAIS, patients with established schizo-
phrenia typically score about 1 standard deviation, 
or 15 IQ points, below the population mean. Deficits 
are typically present at first episode and remain rela-
tive constant over the course of the illness, suggesting 
that cognitive decline precedes the onset of substantial 
symptoms (1, 2). Prospective, follow-back and cross-
sectional data all suggest that cognitive functioning may 
decline during the 3–4 years immediately preceding 
the onset of schizophrenia symptoms. For example, in 
one prospective study, poor educational achievement 
at age 15 was a significant predictor of schizophrenia 
(3). Two follow-back studies have investigated perfor-
mance on standardized educational testing (Iowa test) 
during childhood and adolescence in individuals who 
subsequently developed schizophrenia. Compared with 
the general population, such individuals showed only 
modest deficits even when assessed during 4th and 8th 
grade, but showed a marked decline in performance 
between 8th and 11th grade (4, 5). 

Similarly, individuals with prodromal schizophrenia 
who have not yet converted to psychosis show cognitive 
deficits that are intermediate between those of first-epi-
sode and control subjects, and such deficits may predict 
subsequent conversion to psychosis (6). In a study using 
the Israeli army database, lower than expected IQ at age 
17 – based upon childhood reading and spelling abili-
ties – was a significant risk factor for schizophrenia but 
not bipolar disorders, such that individuals showing a 
10 point or greater discrepancy between expected and 
actual IQ showed an approximately two-fold elevated 
risk for developing schizophrenia (7). 

 Also based upon findings from the army database, 
it appears that intellectual performance remains rela-

tively constant between age 17 and subsequent illness 
onset in individuals who go on to develop schizo-
phrenia, suggesting that most of the cognitive decline 
occurs premorbidly, although further deterioration 
in some domains may be observed (8). Overall, these 
findings highlight neurocognitive dysfunction as a key 
manifestation of schizophrenia that precedes onset of 
symptoms, and must therefore be considered central to 
etiological hypotheses.

Neurochemical Models of 
Schizophrenia
The first effective treatments for schizophrenia were dis-
covered fortuitously in the late 1950s, and subsequently 
shown to mediate their effects at dopamine D2 recep-
tors. Since that time, dopamine has been the primary 
neurotransmitter implicated in schizophrenia, and the 
majority of neurochemical studies of schizophrenia con-
tinue to focus on dopaminergic mechanisms (9, 10). 

Neurochemical models of schizophrenia based 
upon dopamine have had substantial heuristic value in 
explaining key symptoms of schizophrenia, in particular, 
positive symptoms, and in guiding treatment consider-
ations. Nevertheless, significant limitations with regard 
to the dopamine hypothesis remain. First, no intrinsic 
deficits have been observed within the dopamine system 
to account for the presumed hyperdopaminergia associ-
ated with schizophrenia. Second, reconceptualizations 
of the dopamine hypothesis propose that subcortical 
hyperdopaminergia may coexist with cortical hypodo-
paminergia, although mechanisms underlying the dif-
ferential cortical and subcortical abnormalities remain 

Figure 1. Schematic Model of the NMDA Receptor 
Complex. NMDA=N-methyl-D-aspartate; GLY=glycine, 
GSH=glutathione.
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to be determined. Finally, dopaminergic dysfunction, 
in general, accounts poorly for symptom classes in 
schizophrenia other than positive symptoms and for the 
pattern of neurocognitive dysfunction associated with 
schizophrenia. Thus, alternative conceptual models of 
schizophrenia are required.

An alternative to the dopamine model was first pro-
posed in the early 1990s, based upon the observation 
that phencyclidine (PCP), ketamine and other similarly 
acting psychotomimetic compounds induced their 
unique behavioral effects by blocking neurotransmis-
sion at N-methyl-D-aspartate (NMDA)-type gluta-
mate receptors (11, 12) (Figure 1). The ability of these 
compounds to transiently reproduce key symptoms of 
schizophrenia by blocking NMDA receptors led to the 
concept that symptoms in schizophrenia may reflect 
underlying dysfunction or dysregulation of NMDA 
receptor-mediated neurotransmission. This model has 
been increasingly adopted and is now considered to be 
one of the useful models for both etiological conceptu-
alization of schizophrenia and new treatment develop-
ment (13-17).

NMDA receptors are composed of a combination of 
distinct subunits termed NR1, NR2 and NR3. Multiple 
splice variants of the NR1 subunit have been described, 
along with multiple subforms of the NR2 subunit 
termed NR2A-D. All functional NMDA receptors pos-
sess one or more NR1 subunits. In addition, most recep-
tors contain a combination of NR2 subunits, with NR2A 
and NR2B subunits dominating in adult brain. Different 
combinations of subunits confer different properties to 
the receptors. It has been suggested that NR2A and 
NR2B subunit-containing receptors may have differ-
ential roles in psychogenesis (18, 19), although others 
have suggested that combined blockade is needed (20). 
Because of the lack of subunit specific drugs, it is diffi-
cult to determine the involvement of the different sub-
units types in the pathophysiology of schizophrenia and 
it remains possible that subtype-selective intervention 
will prove preferable to generalized modulation across 
NMDA receptor subtypes. 

Symptom Patterns Following NMDA Antagonist 
Administration
In initial studies with PCP and ketamine in the early 
1960s, researchers noted that both agents produced 
what would now be considered positive, negative and 
cognitive symptoms of schizophrenia (12). At the time, 
however, no formal rating scales were used. Recent stud-

ies with ketamine, however, have documented signifi-
cant increases not only in positive symptoms, but also 
in negative and cognitive symptoms (21-23). Levels of 
symptoms during acute ketamine challenge, moreover, 
tend to show a similar pattern across factors as they do 
in schizophrenia. When patients with schizophrenia are 
exposed to ketamine, they also show increases in posi-
tive symptoms, as well as negative symptoms (24, 25), 
suggesting that NMDA antagonists affect a brain system 
that is already vulnerable in schizophrenia. 

Cognitive Deficits Following NMDA Antagonist 
Treatment
As with symptoms, initial studies conducted with PCP 
in the early 1960s also showed cognitive deficits that are 
highly reminiscent of schizophrenia (12). Studies con-
ducted with ketamine over the last 15 years have further 
confirmed and extended these findings. Deficits have 
been observed across widespread neuropsychological 
domains including working memory, response inhibi-
tion and executive processing (23, 26, 27). Ketamine 
infusion also reproduces both the severity and type of 
thought disorder seen in schizophrenia with both, for 
example, being associated with high levels of poverty of 
speech, circumstantiality and loss of goal, and relatively 
low levels of distractive or stilted speech or paraphasias 
(28). Given the importance of neurocognitive dysfunc-
tion to the conceptualization of schizophrenia, these 
findings support the etiological involvement of NMDA 
dysfunction in the pathophysiology of schizophrenia. 

As opposed to ketamine, administration of dopamin-
ergic agonists such as amphetamine does not reproduce 
the pattern of deficit observed in schizophrenia. For 
example, in one recent study that directly compared 
effects of amphetamine and ketamine in normal volun-
teers, both ketamine and amphetamine induced positive 
symptoms and conceptual disorganization. However, 
only ketamine produced perceptual changes, concrete 
ideation or negative symptoms. Further, only ketamine 
induced schizophrenia-like disruptions in delayed 
recall. Finally, amphetamine did not induce working 
memory disturbances, and it significantly reversed 
ketamine-induced disruptions. These findings suggest 
that augmentation, rather than blockade, of frontal dop-
aminergic systems may be beneficial in schizophrenia 
(26). In schizophrenia, amphetamine treatment does not 
further impair cognition and may in fact lead to cogni-
tive improvement in schizophrenia (29). These findings 
therefore suggest greater involvement of NMDA than 
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dopamine receptors in the pathophysiology of cognitive 
impairment in schizophrenia. 

Further evidence for a specific involvement of 
NMDA receptors in schizophrenia comes from fine-
grained analysis of patterns of neurocognitive dysfunc-
tion. Neurocognitive deficits in schizophrenia appear 
generalized when viewed at a “molar” level, such as the 
level of a cognitive “domain.” However, when viewed 
at a more detailed, “molecular” level, fine-grained dif-
ferences between different processes do emerge. For 
example, patients with schizophrenia show reduced 
ability to learn new information, but intact ability to 
retain information once it has been learned. This pat-
tern differs from the “amnestic” syndrome that results 
from bilateral hippocampal damage (2), but is highly 
similar to effects seen following administration of 
NMDA antagonists (30). Overall, the pattern of cog-
nitive dysfunction in schizophrenia follows closely the 
pattern observed following administration of NMDA 
antagonists across a variety of domains, suggesting that 
NMDA dysfunction may be seen as a parsimonious 
model of schizophrenia.

NMDA Dysfunction and Sensory Processing 
Impairment
Another key difference between dopaminergic and 
NMDA models of schizophrenia is predicted involve-
ment of sensory processing. NMDA receptors are widely 
distributed throughout cortex. In contrast, dopamin-
ergic innervation is much more circumscribed, with 
relatively sparse innervations of primary sensory cor-
tex (31, 32). An important issue, therefore, is whether 
information processing deficits in schizophrenia are 
seen only in higher order cortical regions, such as pre-
frontal cortex, or if they are observed throughout brain 
and involve even primary sensory regions. Studies have 
been performed primarily in auditory and visual sys-
tems, although schizophrenia is known to affect other 
sensory processes such as weight discrimination (33) 
and other somatosensory processes (34).

Auditory deficits in schizophrenia. Deficits in auditory 
processing have been investigated using both behav-
ioral and neurophysiological measures. Behaviorally, 
patients show deficits in matching of tones following 
brief delay (35), suggesting dysfunction of the auditory 
sensory memory system. This is a heuristically valuable 
paradigm, as underlying anatomical substrates have 
been well characterized in primate and human models. 
Lesions of auditory sensory cortex, located in superior 

temporal lobe, produce increases in tone matching 
threshold without affecting disruptive effects of dis-
tracting stimuli. In contrast, lesions of prefrontal cortex 
increase distractibility without affecting thresholds (36). 
In patients with schizophrenia, increased thresholds are 
observed with no accompanying increase in susceptibil-
ity to either visual (37) or auditory distraction (38, 39). 
Further, when equated for performance at short inter-
stimulus interval (<1 s), patients show equivalent decay 
with increasing interval (39), suggesting normal reten-
tion within the sensory memory system. These behav-
ioral findings thus suggest dysfunctional information 
processing at the level of auditory sensory cortex.

Auditory function in schizophrenia has also been 
assessed with event-related potentials (ERP). One of the 
most informative potentials has been mismatch nega-
tivity (MMN). MMN is elicited by infrequent changes 
in nature or pattern of repetitive auditory stimulation. 
Deviant stimuli may differ from standards in a num-
ber of stimulus dimensions, including pitch, dura-
tion, intensity or location. Generators for MMN have 
been mapped to auditory sensory cortex in the region 
of Heschl’s gyrus (40). Deficits in MMN generation 
were first demonstrated in schizophrenia over 10 years 
ago and currently represent one of the best replicated 
neurophysiological findings in schizophrenia (41). 
Schizophrenia-like deficits in MMN generation can be 
induced by local infusion of NMDA antagonists into 
primate auditory cortex (40) and by systemic admin-
istration of NMDA antagonists in healthy volunteers 
(23) , suggesting that such deficits may index NMDA 
dysfunction at the level of auditory cortex. In contrast, 
MMN is not modulated via a variety of other psychoac-
tive agents, including the 5-HT2A agonist psilocybin 
(42) and the D1/D2 agonists bromocriptine and per-
golide (43), suggesting relative specificity of the NMDA 
antagonist psychotomimetic effect.

More recent studies have investigated consequences 
of elevated tone matching thresholds to more complex 
forms of information processing dysfunction. Patients 
with schizophrenia, for example, show well-established 
deficits in ability to determine emotion based upon vocal 
modulation (prosody), which are thought to be rate-lim-
iting in terms of functional outcome (44). The etiology 
of such deficits has been poorly understood, as patients 
show normal emotional responses to happy or sad events, 
and show intact internal representation of emotion (45), 
suggesting that failure to detect emotion may be related 
to underlying failure to utilize sensory cues. 
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An initial study of prosodic detection in schizophre-
nia evaluated the relationship between tone matching 
performance on the one hand and both auditory and 
visual emotion detection on the other. Deficits in audi-
tory perceptual performance (tone matching) strongly 
predicted deficits in auditory, but not visual, emotion 
detection. Further, although patients showed deficits 
in both auditory and visual emotion detection, the two 
sets of deficits were statistically unrelated, suggesting 
that deficits clustered within, rather than across modali-
ties. These results thus strongly supported the hypoth-
esis that deficits in “social cognition” in schizophrenia, 
rather than reflecting deficits in the conceptualization 
of emotion instead reflect upward consequences of the 
effects of underlying disturbances in underlying tone 
matching ability (46). A subsequent study demonstrated 
a similar relationship between tone matching ability and 
ability to detect attitudinal prosody (sarcasm) (47), as 
well as non-affective prosody such as ability to differ-
entiate questions from statements (semantic prosody) 
(48). Further, severity of deficit across individuals cor-
related highly with reduced structural integrity within 
auditory white matter pathways at the level of auditory 
cortex (48). When sensory performance has been evalu-
ated as a function of stimulus properties deficits in emo-
tional detection have been found to involve particularly 
those types of emotional distinctions that depend upon 
differentiation of pitch (49). Further, in addition to 
showing deficits in identifying emotions, patients show 
deficits in differentiating between emotional intensities, 
also consistent with inability to process changes in pitch 
that differentiate emotions (49). Taken together, these 
findings suggest that basic deficits in NMDA receptor-
mediated neurotransmission at the level of auditory 
sensory cortex lead to sensory level disturbances which, 
in turn, upward generalize to produce disturbances in 
high level processes such as ability to interpret tone-
of-voice.

Visual processing deficits. Similar studies have now 
been performed investigating consequences of NMDA 
dysfunction in the early visual system. The early visual 
system consists of discrete magnocellular and parvocel-
lular pathways that differ in characteristics and function. 
The magnocellular pathway provides rapid transmis-
sion of low-resolution information to cortex, in order 
to prime attentional systems and “frame” the overall 
visual scene. The parvocellular pathway, in contrast, 
provides slower, higher resolution information to fill in 
scene details (50). NMDA receptors are located at mul-

tiple levels of the early visual system, including retina, 
lateral geniculate nucleus (LGN) and primary cortex. 
The magnocellular system, in particular, functions in a 
non-linear gain mode that is dependent upon NMDA 
receptor-mediated neurotransmission. Administration 
of NMDA antagonists to cat LGN produces a character-
istic reduction in gain that is also observed in schizo-
phrenia (51).

To date, deficits in visual processing have been dem-
onstrated in schizophrenia using both steady-state 
(51-53) and transient (54-56) visual evoked potential 
approaches. Further, deficits in early visual process-
ing produce subsequent impairments on higher order 
processes such as object identification (57), motion 
processing (58) and reading (59). Further, change in 
the physical properties of stimuli to make them more 
tractable to visual analysis leads to significant improve-
ment in performance in such high-level tasks as the 
AX-version of the continuous performance task (60) or 
Wisconsin Card Sorting Test (61). Thus, as in the audi-
tory system, basic deficits in NMDA function within 
subcortical and cortical systems lead to breakdown of 
basic sensory discrimination abilities, which, in turn, 
produce complex patterns of higher level cognitive dis-
turbances in schizophrenia. 

Glutamate-dopamine Glutamate-GABA Interactions
Finally, NMDA dysfunction may also account for both 
the impaired dopaminergic regulation and the impaired 
GABAergic neurotransmission that has been docu-
mented in schizophrenia. Dopaminergic dysfunction 
has been studied most extensively using positron emis-
sion (PET) or single photon emission (SPECT) mark-
ers of response to amphetamine. In such studies, D2 
agonists are tagged with appropriate radionuclides (e.g., 
[14C], [123I]) and pattern of displacement is evaluated 
following amphetamine administration. Across cohorts, 
patients with acute schizophrenia show enhanced 
striatal dopamine release to amphetamine challenge, 
consistent with presumed dysregulation of subcortical 
dopamine circuits (62). 

Deficits similar to those observed in schizophrenia 
are observed in normal volunteers undergoing ketamine 
infusion (63), and in rodents treated subchronically (64, 
65) with NMDA receptor antagonists, suggesting that 
dopaminergic dysregulation in schizophrenia may be 
“downstream” of a primary deficit in NMDA function. 
Similarly, NMDA antagonists alter the random firing 
rate of rodent prefrontal neurons while decreasing burst 
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firing (66), also supporting the concept that deficits in 
NMDA transmission may lead to the widely cited dis-
turbances in prefrontal function in schizophrenia.

Changes in GABAergic neurotransmission have also 
been increasingly well documented over recent years, 
with studies showing reduced parvalbumin and GAD67 
expression, particularly in prefrontal cortex (67-71) and 
hippocampus (72-74). Similar effects are seen in both 
rodents (75-79) and monkeys (80) treated with NMDA 
antagonists such as PCP, as well as in cell culture (81). 
GABAergic dysfunction in PFC may be directly linked 
to well-documented deficits in working memory func-
tion, and may therefore represent an appropriate target 
of pharmacological intervention (82). Nevertheless, eti-
ologically such abnormalities may reflect downstream 
effects of primary deficits in NMDA receptor-mediated 
neurotransmission.

Clinical Studies with NMDA Agonists 
Given the ability of NMDA receptor antagonists to 
induce symptoms that closely resemble those of schizo-
phrenia, a critical issue is whether treatment approaches 
based upon glutamatergic and NMDA models can lead 
to new treatment approaches. Over the past decade, sev-
eral new treatment strategies have been proposed. First, 
direct and indirect approaches have targeted the glycine 
modulatory site of the NMDA receptor complex. Direct 
agonists have included treatment with the naturally 
occurring amino acids glycine and D-serine, which 
serve as endogenous modulators of NMDA receptors in 
vivo, as well the anti-tuberculosis drug D-cycloserine, 
which fortuitously cross-reacts with the NMDA/glycine 
site (83). These agents have proven effective in several 

preclinical models, including reversal of PCP effects in 
both rodents (84, 85) and primates (86). 

A “second generation” approach to this problem has 
been the use of glycine type I (GlyT1) transport inhibi-
tors (GTIs). Rather than serving as direct glycine pre-
cursors, these compounds increase glycine levels in brain 
by preventing glycine removal from the synaptic cleft, 
leading to endogenous increases in CSF glycine levels 
(87) (Figure 2). An initial study with glycyldodeclamide, 
a relatively low affinity agent, demonstrated significant 
reversal of PCP-induced hyperactivity in rodents (88, 
89). Since then, high affinity GTIs have been synthesized 
by several pharmaceutical companies, and have shown to 
be effective in multiple animal models (Table 1). Several 
of these compounds are currently in early-stage clinical 
trials, with results expected over the next several years.

Two other treatment strategies have been proposed. 
First, in addition to the glycine modulatory site, NMDA 
receptors contain a redox-sensitive site that is modu-
lated by the oxidized form of glutathione (GSH) (90, 
91) (Figure 1). Schizophrenia has also been shown 
to be associated with reduced levels of GSH (92-94), 
leading to potential dysfunction of NMDA receptors 
(95). Early studies testing this mechanism have utilized 
N-acetylcysteine, a glutathione precursor, as a potential 
psychopharmacological agent.

Second, based upon the observation that NMDA 
blockade leads to rebound increases in glutamate release 
that may themselves be pathological (96), it has been 
proposed that compounds that inhibit presynaptic glu-
tamate release may also be therapeutic (97). Examples 
of such compounds include the anti-epilepsy drug 

Table 1: Preclinical Paradigms of Relevance to Schizophrenia 
in Which Glycine Transport Inhibitors Have Proven Effective 

Test Measure Reference

Inhibition of phencyclidine (PCP)-induced hyperactivity 
in vivo

[88, 123, 124]

Inhibition of striatal dopamine release in vitro [125]

Potentiation of hippocampal NMDA responses in vitro [126]

Potentiation of prefrontal/hippocampal NMDA responses 
in vitro 

[127-129]

Normalization of prepulse inhibition (PPI) deficits in 
rodents

[128-130]

Normalization of PCP-induced increases in amphetamine-
stimulated dopamine release

[84]

Reversal of locomotor hypersensitivity to amphetamine 
neonatally PCP-treated rats

[129]

Elevation of CSF glycine levels [131]

Figure 2. Schematic Model of Synaptic Glycine Regulation by 
Glycine Transport Inhibitors. 
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lamotrigine and agonists of metabotropic glutamate 
type 2/3 (mGluR2/3) receptors, which are localized to 
presynaptic glutamate terminals in prefrontal cortex. 
mGluR2/3 agonists have been shown to be effective in 
reversing behavioral effects of NMDA antagonists in 
rodent models (98), supporting the potential efficacy 
of these compounds as novel antipsychotic agents. In 
addition, both lamotrigine (99) and mGluR 2/3 agonists 
(100) have also been shown to reverse clinical effects of 
ketamine during acute challenge in normal volunteers, 
further supporting the applicability of basic models to 
humans. In general, therefore, as the NMDA model 
reaches its second decade, the base of treatment devel-
opment based upon glutamatergic theories continues 
to increase. 

Other metabotropic ligands, including mGluR5 
(101, 102) and mGluR8 (103) agonists, have also 
been proposed as potential treatments for schizo-
phrenia, based upon their ability to modulate NMDA 
receptor-mediated neurotransmission (104). Finally, 
N-acetylaspartylglutamate (NAAG) may be an endog-
enous ligand for mGlu2/3 receptors in CNS. NAAG is 
broken down by NAAG peptidase (glutamate carboxy-
peptidase II) (105). Compounds that inhibit NAAG 
peptidase, such as an experimental inhibitor termed 
ZJ43, would therefore lead to increased mGlu2/3 occu-
pancy. This compound has been tested preclinically and 
shown to inhibit PCP- and MK-801-induced behaviors 
in animals, consistent with an effect on NMDA recep-
tor-mediated neurotransmission (106, 107). 

Finally, some authors have suggested that NMDA 
antagonists may be beneficial, based upon concepts 
that cognitive deficits in schizophrenia may result from 
hyper-glutamatergic neurotoxicity (13). Examples of 
compounds that have been considered based upon 
this hypothesis are AMPA antagonists and the anti-
Alzheimers disease drug memantine. To date, however, 
clinical experience with NMDA antagonists has not 
been encouraging (108). 

Results of Clinical Studies
The most studies to date have been performed with 
NMDA agonists, primarily because several of the agents 
used have been natural compounds, and so it has not 
been necessary to wait for structure activity optimization 
or preclinical toxicity testing. Nevertheless, this approach 
is also a limitation, as permeability of these agents may 
be limited, and delivering optimal doses may therefore 
be impossible. Nevertheless, positive studies with these 

compounds have provided proof-of-concept for develop-
ment of compounds with higher affinity and specificity. 

Studies with naturally occurring compounds to date 
have primarily used glycine, administered at a dose of 
up to 800 mg/kg (approx. 60 g/d) (109-112); D-serine, 
administered at a dose of 30 mg/kg (approx. 2.1 g/d) 
(113, 114) or D-alanine administered at a dose of 100 
mg/kg (115); and sarcosine, administered at a dose of 
30 mg/kg (approx. 2.1 g/d) (116, 117). For glycine, this 
represents the highest practical dose because of the 
quantity of amino acid needed to significantly increase 
brain glycine levels. For other compounds, formal dose 
findings studies have not been performed, and maxi-
mum tolerated doses are presently unknown.

Across all studies utilizing full agonists in combina-
tion with either typical or newer atypical antipsychotic 
drugs, NMDA agonists have been found to produce an 
approximately 15% improvement in negative symptoms, 
along with significant changes in positive and cognitive 

symptoms in some but not all studies (83) (see figure 
3). One study has evaluated effects of glycine in a limited 
number of individuals showing prodromal symptoms of 
schizophrenia. In that study, large effect-size improve-
ment was observed, including early remission in three 
of 10 subjects (118). These data, if confirmed, would 
indicate that NMDA agonists might have a primary role 
in the earliest stages of schizophrenia psychosis, with 
potential impact across symptomatic domains.

Figure 3. Summary of clinical trials performed to date with 
full NMDA agonists combined with antipsychotics other than 
clozapine. Studies were conducted using the amino acid glycine 
at doses of 0.4-0.8 g/kg (30-60 g/d) unless otherwise indicated. 
Further details about individual studies are provided in (83). 
CONSIST refers to The Cognitive and Negative Symptoms in 
Schizophrenia Trial (132). Statistics were calculated as weighted 
average of % change scores for negative symptoms, across trials.
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Studies of other mechanisms also show suggestive 
findings. Thus, one study of N-acetylcysteine, a precur-
sor of glutathione, produced significant improvement in 
PANSS total and negative symptoms in schizophrenia 
(119), along with improvement in generation of MMN, 
which may serve as a biomarker of NMDA dysfunction 
(120). Two small studies with lamotrigine showed sug-
gestive results (121, 122), although a subsequent mul-
ticenter double-blind study was negative. To date, one 
phase II study with the oral mGluR2/3 agonist prodrug 
LY2140023, used as monotherapy in acutely relapsing 
subjects, showed clinical efficacy similar to that of olan-
zapine with markedly reduced incidence of metabolic 
side effects. Although this study requires replication, it 
is encouraging with regard to overall efficacy of gluta-
matergic approaches.

Summary
Glutamatergic models of schizophrenia were first pro-
posed over two decades ago, based upon the effects of 
the agents PCP and ketamine, which were shown to 
induce their unique psychotomimetic effects by blocking 
neurotransmission at NMDA-type glutamate receptors. 
Since that time, glutamatergic models have been strongly 
supported by NMDA antagonists studies in animals, as 
well as ketamine challenge studies in humans. Over 
that time, potential molecular contributors to NMDA 
dysfunction have been increasingly documented. 
New treatment approaches based upon glutamatergic 
approaches are only now reaching the clinic, and will 
serve to further elucidate and refine these models over 
upcoming years. Whether glutamatergic approaches 
will eventually supplant dopamine antagonists for treat-
ment of positive symptoms remains to be determined. 
Nevertheless, glutamatergic approaches offer particular 
hope for treatment of negative symptoms and cognitive 
deficits in schizophrenia, and thus for improvement of 
the clinical situation of thousands of patients in Israel 
and millions of patients worldwide.
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